ai-photo-gallery / mmdet /models /backbones /detectors_resnet.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmengine.logging import MMLogger
from mmengine.model import Sequential, constant_init, kaiming_init
from mmengine.runner.checkpoint import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from mmdet.registry import MODELS
from .resnet import BasicBlock
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet
class Bottleneck(_Bottleneck):
r"""Bottleneck for the ResNet backbone in `DetectoRS
<https://arxiv.org/pdf/2006.02334.pdf>`_.
This bottleneck allows the users to specify whether to use
SAC (Switchable Atrous Convolution) and RFP (Recursive Feature Pyramid).
Args:
inplanes (int): The number of input channels.
planes (int): The number of output channels before expansion.
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
sac (dict, optional): Dictionary to construct SAC. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
expansion = 4
def __init__(self,
inplanes,
planes,
rfp_inplanes=None,
sac=None,
init_cfg=None,
**kwargs):
super(Bottleneck, self).__init__(
inplanes, planes, init_cfg=init_cfg, **kwargs)
assert sac is None or isinstance(sac, dict)
self.sac = sac
self.with_sac = sac is not None
if self.with_sac:
self.conv2 = build_conv_layer(
self.sac,
planes,
planes,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
bias=False)
self.rfp_inplanes = rfp_inplanes
if self.rfp_inplanes:
self.rfp_conv = build_conv_layer(
None,
self.rfp_inplanes,
planes * self.expansion,
1,
stride=1,
bias=True)
if init_cfg is None:
self.init_cfg = dict(
type='Constant', val=0, override=dict(name='rfp_conv'))
def rfp_forward(self, x, rfp_feat):
"""The forward function that also takes the RFP features as input."""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv1_plugin_names)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv2_plugin_names)
out = self.conv3(out)
out = self.norm3(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv3_plugin_names)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
if self.rfp_inplanes:
rfp_feat = self.rfp_conv(rfp_feat)
out = out + rfp_feat
out = self.relu(out)
return out
class ResLayer(Sequential):
"""ResLayer to build ResNet style backbone for RPF in detectoRS.
The difference between this module and base class is that we pass
``rfp_inplanes`` to the first block.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
downsample_first (bool): Downsample at the first block or last block.
False for Hourglass, True for ResNet. Default: True
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
"""
def __init__(self,
block,
inplanes,
planes,
num_blocks,
stride=1,
avg_down=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
downsample_first=True,
rfp_inplanes=None,
**kwargs):
self.block = block
assert downsample_first, f'downsample_first={downsample_first} is ' \
'not supported in DetectoRS'
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = []
conv_stride = stride
if avg_down and stride != 1:
conv_stride = 1
downsample.append(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False))
downsample.extend([
build_conv_layer(
conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=conv_stride,
bias=False),
build_norm_layer(norm_cfg, planes * block.expansion)[1]
])
downsample = nn.Sequential(*downsample)
layers = []
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
rfp_inplanes=rfp_inplanes,
**kwargs))
inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
super(ResLayer, self).__init__(*layers)
@MODELS.register_module()
class DetectoRS_ResNet(ResNet):
"""ResNet backbone for DetectoRS.
Args:
sac (dict, optional): Dictionary to construct SAC (Switchable Atrous
Convolution). Default: None.
stage_with_sac (list): Which stage to use sac. Default: (False, False,
False, False).
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
output_img (bool): If ``True``, the input image will be inserted into
the starting position of output. Default: False.
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self,
sac=None,
stage_with_sac=(False, False, False, False),
rfp_inplanes=None,
output_img=False,
pretrained=None,
init_cfg=None,
**kwargs):
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be specified at the same time'
self.pretrained = pretrained
if init_cfg is not None:
assert isinstance(init_cfg, dict), \
f'init_cfg must be a dict, but got {type(init_cfg)}'
if 'type' in init_cfg:
assert init_cfg.get('type') == 'Pretrained', \
'Only can initialize module by loading a pretrained model'
else:
raise KeyError('`init_cfg` must contain the key "type"')
self.pretrained = init_cfg.get('checkpoint')
self.sac = sac
self.stage_with_sac = stage_with_sac
self.rfp_inplanes = rfp_inplanes
self.output_img = output_img
super(DetectoRS_ResNet, self).__init__(**kwargs)
self.inplanes = self.stem_channels
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = self.strides[i]
dilation = self.dilations[i]
dcn = self.dcn if self.stage_with_dcn[i] else None
sac = self.sac if self.stage_with_sac[i] else None
if self.plugins is not None:
stage_plugins = self.make_stage_plugins(self.plugins, i)
else:
stage_plugins = None
planes = self.base_channels * 2**i
res_layer = self.make_res_layer(
block=self.block,
inplanes=self.inplanes,
planes=planes,
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
style=self.style,
avg_down=self.avg_down,
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
dcn=dcn,
sac=sac,
rfp_inplanes=rfp_inplanes if i > 0 else None,
plugins=stage_plugins)
self.inplanes = planes * self.block.expansion
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
# In order to be properly initialized by RFP
def init_weights(self):
# Calling this method will cause parameter initialization exception
# super(DetectoRS_ResNet, self).init_weights()
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.dcn is not None:
for m in self.modules():
if isinstance(m, Bottleneck) and hasattr(
m.conv2, 'conv_offset'):
constant_init(m.conv2.conv_offset, 0)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
else:
raise TypeError('pretrained must be a str or None')
def make_res_layer(self, **kwargs):
"""Pack all blocks in a stage into a ``ResLayer`` for DetectoRS."""
return ResLayer(**kwargs)
def forward(self, x):
"""Forward function."""
outs = list(super(DetectoRS_ResNet, self).forward(x))
if self.output_img:
outs.insert(0, x)
return tuple(outs)
def rfp_forward(self, x, rfp_feats):
"""Forward function for RFP."""
if self.deep_stem:
x = self.stem(x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
rfp_feat = rfp_feats[i] if i > 0 else None
for layer in res_layer:
x = layer.rfp_forward(x, rfp_feat)
if i in self.out_indices:
outs.append(x)
return tuple(outs)