Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Sequence, Tuple | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmengine.model import BaseModule | |
from torch import Tensor | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmdet.registry import MODELS | |
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig | |
from ..layers import CSPLayer | |
from .csp_darknet import SPPBottleneck | |
class CSPNeXt(BaseModule): | |
"""CSPNeXt backbone used in RTMDet. | |
Args: | |
arch (str): Architecture of CSPNeXt, from {P5, P6}. | |
Defaults to P5. | |
expand_ratio (float): Ratio to adjust the number of channels of the | |
hidden layer. Defaults to 0.5. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
use_depthwise (bool): Whether to use depthwise separable convolution. | |
Defaults to False. | |
arch_ovewrite (list): Overwrite default arch settings. | |
Defaults to None. | |
spp_kernel_sizes: (tuple[int]): Sequential of kernel sizes of SPP | |
layers. Defaults to (5, 9, 13). | |
channel_attention (bool): Whether to add channel attention in each | |
stage. Defaults to True. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and | |
config norm layer. Defaults to dict(type='BN', requires_grad=True). | |
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`]): Initialization config dict. | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 6, True, False], [512, 1024, 3, False, True]], | |
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 6, True, False], [512, 768, 3, True, False], | |
[768, 1024, 3, False, True]] | |
} | |
def __init__( | |
self, | |
arch: str = 'P5', | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
out_indices: Sequence[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
use_depthwise: bool = False, | |
expand_ratio: float = 0.5, | |
arch_ovewrite: dict = None, | |
spp_kernel_sizes: Sequence[int] = (5, 9, 13), | |
channel_attention: bool = True, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU'), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = dict( | |
type='Kaiming', | |
layer='Conv2d', | |
a=math.sqrt(5), | |
distribution='uniform', | |
mode='fan_in', | |
nonlinearity='leaky_relu') | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
arch_setting = self.arch_settings[arch] | |
if arch_ovewrite: | |
arch_setting = arch_ovewrite | |
assert set(out_indices).issubset( | |
i for i in range(len(arch_setting) + 1)) | |
if frozen_stages not in range(-1, len(arch_setting) + 1): | |
raise ValueError('frozen_stages must be in range(-1, ' | |
'len(arch_setting) + 1). But received ' | |
f'{frozen_stages}') | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.use_depthwise = use_depthwise | |
self.norm_eval = norm_eval | |
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule | |
self.stem = nn.Sequential( | |
ConvModule( | |
3, | |
int(arch_setting[0][0] * widen_factor // 2), | |
3, | |
padding=1, | |
stride=2, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg), | |
ConvModule( | |
int(arch_setting[0][0] * widen_factor // 2), | |
int(arch_setting[0][0] * widen_factor // 2), | |
3, | |
padding=1, | |
stride=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg), | |
ConvModule( | |
int(arch_setting[0][0] * widen_factor // 2), | |
int(arch_setting[0][0] * widen_factor), | |
3, | |
padding=1, | |
stride=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg)) | |
self.layers = ['stem'] | |
for i, (in_channels, out_channels, num_blocks, add_identity, | |
use_spp) in enumerate(arch_setting): | |
in_channels = int(in_channels * widen_factor) | |
out_channels = int(out_channels * widen_factor) | |
num_blocks = max(round(num_blocks * deepen_factor), 1) | |
stage = [] | |
conv_layer = conv( | |
in_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(conv_layer) | |
if use_spp: | |
spp = SPPBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=spp_kernel_sizes, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(spp) | |
csp_layer = CSPLayer( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
use_depthwise=use_depthwise, | |
use_cspnext_block=True, | |
expand_ratio=expand_ratio, | |
channel_attention=channel_attention, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
stage.append(csp_layer) | |
self.add_module(f'stage{i + 1}', nn.Sequential(*stage)) | |
self.layers.append(f'stage{i + 1}') | |
def _freeze_stages(self) -> None: | |
if self.frozen_stages >= 0: | |
for i in range(self.frozen_stages + 1): | |
m = getattr(self, self.layers[i]) | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True) -> None: | |
super().train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
def forward(self, x: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |