KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import xml.etree.ElementTree as ET
from typing import List, Optional, Union
import mmcv
from mmengine.fileio import list_from_file
from mmdet.registry import DATASETS
from .base_det_dataset import BaseDetDataset
@DATASETS.register_module()
class XMLDataset(BaseDetDataset):
"""XML dataset for detection.
Args:
img_subdir (str): Subdir where images are stored. Default: JPEGImages.
ann_subdir (str): Subdir where annotations are. Default: Annotations.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmengine.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
img_subdir: str = 'JPEGImages',
ann_subdir: str = 'Annotations',
**kwargs) -> None:
self.img_subdir = img_subdir
self.ann_subdir = ann_subdir
super().__init__(**kwargs)
@property
def sub_data_root(self) -> str:
"""Return the sub data root."""
return self.data_prefix.get('sub_data_root', '')
def load_data_list(self) -> List[dict]:
"""Load annotation from XML style ann_file.
Returns:
list[dict]: Annotation info from XML file.
"""
assert self._metainfo.get('classes', None) is not None, \
'`classes` in `XMLDataset` can not be None.'
self.cat2label = {
cat: i
for i, cat in enumerate(self._metainfo['classes'])
}
data_list = []
img_ids = list_from_file(
self.ann_file, file_client_args=self.file_client_args)
for img_id in img_ids:
file_name = osp.join(self.img_subdir, f'{img_id}.jpg')
xml_path = osp.join(self.sub_data_root, self.ann_subdir,
f'{img_id}.xml')
raw_img_info = {}
raw_img_info['img_id'] = img_id
raw_img_info['file_name'] = file_name
raw_img_info['xml_path'] = xml_path
parsed_data_info = self.parse_data_info(raw_img_info)
data_list.append(parsed_data_info)
return data_list
@property
def bbox_min_size(self) -> Optional[str]:
"""Return the minimum size of bounding boxes in the images."""
if self.filter_cfg is not None:
return self.filter_cfg.get('bbox_min_size', None)
else:
return None
def parse_data_info(self, img_info: dict) -> Union[dict, List[dict]]:
"""Parse raw annotation to target format.
Args:
img_info (dict): Raw image information, usually it includes
`img_id`, `file_name`, and `xml_path`.
Returns:
Union[dict, List[dict]]: Parsed annotation.
"""
data_info = {}
img_path = osp.join(self.sub_data_root, img_info['file_name'])
data_info['img_path'] = img_path
data_info['img_id'] = img_info['img_id']
data_info['xml_path'] = img_info['xml_path']
# deal with xml file
with self.file_client.get_local_path(
img_info['xml_path']) as local_path:
raw_ann_info = ET.parse(local_path)
root = raw_ann_info.getroot()
size = root.find('size')
if size is not None:
width = int(size.find('width').text)
height = int(size.find('height').text)
else:
img_bytes = self.file_client.get(img_path)
img = mmcv.imfrombytes(img_bytes, backend='cv2')
height, width = img.shape[:2]
del img, img_bytes
data_info['height'] = height
data_info['width'] = width
instances = []
for obj in raw_ann_info.findall('object'):
instance = {}
name = obj.find('name').text
if name not in self._metainfo['classes']:
continue
difficult = obj.find('difficult')
difficult = 0 if difficult is None else int(difficult.text)
bnd_box = obj.find('bndbox')
bbox = [
int(float(bnd_box.find('xmin').text)) - 1,
int(float(bnd_box.find('ymin').text)) - 1,
int(float(bnd_box.find('xmax').text)) - 1,
int(float(bnd_box.find('ymax').text)) - 1
]
ignore = False
if self.bbox_min_size is not None:
assert not self.test_mode
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
if w < self.bbox_min_size or h < self.bbox_min_size:
ignore = True
if difficult or ignore:
instance['ignore_flag'] = 1
else:
instance['ignore_flag'] = 0
instance['bbox'] = bbox
instance['bbox_label'] = self.cat2label[name]
instances.append(instance)
data_info['instances'] = instances
return data_info
def filter_data(self) -> List[dict]:
"""Filter annotations according to filter_cfg.
Returns:
List[dict]: Filtered results.
"""
if self.test_mode:
return self.data_list
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) \
if self.filter_cfg is not None else False
min_size = self.filter_cfg.get('min_size', 0) \
if self.filter_cfg is not None else 0
valid_data_infos = []
for i, data_info in enumerate(self.data_list):
width = data_info['width']
height = data_info['height']
if filter_empty_gt and len(data_info['instances']) == 0:
continue
if min(width, height) >= min_size:
valid_data_infos.append(data_info)
return valid_data_infos