ai-photo-gallery / mmdet /datasets /samplers /multi_source_sampler.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
from typing import Iterator, List, Optional, Sized, Union
import numpy as np
import torch
from mmengine.dataset import BaseDataset
from mmengine.dist import get_dist_info, sync_random_seed
from torch.utils.data import Sampler
from mmdet.registry import DATA_SAMPLERS
@DATA_SAMPLERS.register_module()
class MultiSourceSampler(Sampler):
r"""Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different
datasets to form batches.
Args:
dataset (Sized): The dataset.
batch_size (int): Size of mini-batch.
source_ratio (list[int | float]): The sampling ratio of different
source datasets in a mini-batch.
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
seed (int, optional): Random seed. If None, set a random seed.
Defaults to None.
Examples:
>>> dataset_type = 'ConcatDataset'
>>> sub_dataset_type = 'CocoDataset'
>>> data_root = 'data/coco/'
>>> sup_ann = '../coco_semi_annos/[email protected]'
>>> unsup_ann = '../coco_semi_annos/' \
>>> '[email protected]'
>>> dataset = dict(type=dataset_type,
>>> datasets=[
>>> dict(
>>> type=sub_dataset_type,
>>> data_root=data_root,
>>> ann_file=sup_ann,
>>> data_prefix=dict(img='train2017/'),
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32),
>>> pipeline=sup_pipeline),
>>> dict(
>>> type=sub_dataset_type,
>>> data_root=data_root,
>>> ann_file=unsup_ann,
>>> data_prefix=dict(img='train2017/'),
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32),
>>> pipeline=unsup_pipeline),
>>> ])
>>> train_dataloader = dict(
>>> batch_size=5,
>>> num_workers=5,
>>> persistent_workers=True,
>>> sampler=dict(type='MultiSourceSampler',
>>> batch_size=5, source_ratio=[1, 4]),
>>> batch_sampler=None,
>>> dataset=dataset)
"""
def __init__(self,
dataset: Sized,
batch_size: int,
source_ratio: List[Union[int, float]],
shuffle: bool = True,
seed: Optional[int] = None) -> None:
assert hasattr(dataset, 'cumulative_sizes'),\
f'The dataset must be ConcatDataset, but get {dataset}'
assert isinstance(batch_size, int) and batch_size > 0, \
'batch_size must be a positive integer value, ' \
f'but got batch_size={batch_size}'
assert isinstance(source_ratio, list), \
f'source_ratio must be a list, but got source_ratio={source_ratio}'
assert len(source_ratio) == len(dataset.cumulative_sizes), \
'The length of source_ratio must be equal to ' \
f'the number of datasets, but got source_ratio={source_ratio}'
rank, world_size = get_dist_info()
self.rank = rank
self.world_size = world_size
self.dataset = dataset
self.cumulative_sizes = [0] + dataset.cumulative_sizes
self.batch_size = batch_size
self.source_ratio = source_ratio
self.num_per_source = [
int(batch_size * sr / sum(source_ratio)) for sr in source_ratio
]
self.num_per_source[0] = batch_size - sum(self.num_per_source[1:])
assert sum(self.num_per_source) == batch_size, \
'The sum of num_per_source must be equal to ' \
f'batch_size, but get {self.num_per_source}'
self.seed = sync_random_seed() if seed is None else seed
self.shuffle = shuffle
self.source2inds = {
source: self._indices_of_rank(len(ds))
for source, ds in enumerate(dataset.datasets)
}
def _infinite_indices(self, sample_size: int) -> Iterator[int]:
"""Infinitely yield a sequence of indices."""
g = torch.Generator()
g.manual_seed(self.seed)
while True:
if self.shuffle:
yield from torch.randperm(sample_size, generator=g).tolist()
else:
yield from torch.arange(sample_size).tolist()
def _indices_of_rank(self, sample_size: int) -> Iterator[int]:
"""Slice the infinite indices by rank."""
yield from itertools.islice(
self._infinite_indices(sample_size), self.rank, None,
self.world_size)
def __iter__(self) -> Iterator[int]:
batch_buffer = []
while True:
for source, num in enumerate(self.num_per_source):
batch_buffer_per_source = []
for idx in self.source2inds[source]:
idx += self.cumulative_sizes[source]
batch_buffer_per_source.append(idx)
if len(batch_buffer_per_source) == num:
batch_buffer += batch_buffer_per_source
break
yield from batch_buffer
batch_buffer = []
def __len__(self) -> int:
return len(self.dataset)
def set_epoch(self, epoch: int) -> None:
"""Not supported in `epoch-based runner."""
pass
@DATA_SAMPLERS.register_module()
class GroupMultiSourceSampler(MultiSourceSampler):
r"""Group Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different
datasets but the same group to form batches.
Args:
dataset (Sized): The dataset.
batch_size (int): Size of mini-batch.
source_ratio (list[int | float]): The sampling ratio of different
source datasets in a mini-batch.
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
seed (int, optional): Random seed. If None, set a random seed.
Defaults to None.
"""
def __init__(self,
dataset: BaseDataset,
batch_size: int,
source_ratio: List[Union[int, float]],
shuffle: bool = True,
seed: Optional[int] = None) -> None:
super().__init__(
dataset=dataset,
batch_size=batch_size,
source_ratio=source_ratio,
shuffle=shuffle,
seed=seed)
self._get_source_group_info()
self.group_source2inds = [{
source:
self._indices_of_rank(self.group2size_per_source[source][group])
for source in range(len(dataset.datasets))
} for group in range(len(self.group_ratio))]
def _get_source_group_info(self) -> None:
self.group2size_per_source = [{0: 0, 1: 0}, {0: 0, 1: 0}]
self.group2inds_per_source = [{0: [], 1: []}, {0: [], 1: []}]
for source, dataset in enumerate(self.dataset.datasets):
for idx in range(len(dataset)):
data_info = dataset.get_data_info(idx)
width, height = data_info['width'], data_info['height']
group = 0 if width < height else 1
self.group2size_per_source[source][group] += 1
self.group2inds_per_source[source][group].append(idx)
self.group_sizes = np.zeros(2, dtype=np.int64)
for group2size in self.group2size_per_source:
for group, size in group2size.items():
self.group_sizes[group] += size
self.group_ratio = self.group_sizes / sum(self.group_sizes)
def __iter__(self) -> Iterator[int]:
batch_buffer = []
while True:
group = np.random.choice(
list(range(len(self.group_ratio))), p=self.group_ratio)
for source, num in enumerate(self.num_per_source):
batch_buffer_per_source = []
for idx in self.group_source2inds[group][source]:
idx = self.group2inds_per_source[source][group][
idx] + self.cumulative_sizes[source]
batch_buffer_per_source.append(idx)
if len(batch_buffer_per_source) == num:
batch_buffer += batch_buffer_per_source
break
yield from batch_buffer
batch_buffer = []