Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import itertools | |
from typing import Iterator, List, Optional, Sized, Union | |
import numpy as np | |
import torch | |
from mmengine.dataset import BaseDataset | |
from mmengine.dist import get_dist_info, sync_random_seed | |
from torch.utils.data import Sampler | |
from mmdet.registry import DATA_SAMPLERS | |
class MultiSourceSampler(Sampler): | |
r"""Multi-Source Infinite Sampler. | |
According to the sampling ratio, sample data from different | |
datasets to form batches. | |
Args: | |
dataset (Sized): The dataset. | |
batch_size (int): Size of mini-batch. | |
source_ratio (list[int | float]): The sampling ratio of different | |
source datasets in a mini-batch. | |
shuffle (bool): Whether shuffle the dataset or not. Defaults to True. | |
seed (int, optional): Random seed. If None, set a random seed. | |
Defaults to None. | |
Examples: | |
>>> dataset_type = 'ConcatDataset' | |
>>> sub_dataset_type = 'CocoDataset' | |
>>> data_root = 'data/coco/' | |
>>> sup_ann = '../coco_semi_annos/[email protected]' | |
>>> unsup_ann = '../coco_semi_annos/' \ | |
>>> '[email protected]' | |
>>> dataset = dict(type=dataset_type, | |
>>> datasets=[ | |
>>> dict( | |
>>> type=sub_dataset_type, | |
>>> data_root=data_root, | |
>>> ann_file=sup_ann, | |
>>> data_prefix=dict(img='train2017/'), | |
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
>>> pipeline=sup_pipeline), | |
>>> dict( | |
>>> type=sub_dataset_type, | |
>>> data_root=data_root, | |
>>> ann_file=unsup_ann, | |
>>> data_prefix=dict(img='train2017/'), | |
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
>>> pipeline=unsup_pipeline), | |
>>> ]) | |
>>> train_dataloader = dict( | |
>>> batch_size=5, | |
>>> num_workers=5, | |
>>> persistent_workers=True, | |
>>> sampler=dict(type='MultiSourceSampler', | |
>>> batch_size=5, source_ratio=[1, 4]), | |
>>> batch_sampler=None, | |
>>> dataset=dataset) | |
""" | |
def __init__(self, | |
dataset: Sized, | |
batch_size: int, | |
source_ratio: List[Union[int, float]], | |
shuffle: bool = True, | |
seed: Optional[int] = None) -> None: | |
assert hasattr(dataset, 'cumulative_sizes'),\ | |
f'The dataset must be ConcatDataset, but get {dataset}' | |
assert isinstance(batch_size, int) and batch_size > 0, \ | |
'batch_size must be a positive integer value, ' \ | |
f'but got batch_size={batch_size}' | |
assert isinstance(source_ratio, list), \ | |
f'source_ratio must be a list, but got source_ratio={source_ratio}' | |
assert len(source_ratio) == len(dataset.cumulative_sizes), \ | |
'The length of source_ratio must be equal to ' \ | |
f'the number of datasets, but got source_ratio={source_ratio}' | |
rank, world_size = get_dist_info() | |
self.rank = rank | |
self.world_size = world_size | |
self.dataset = dataset | |
self.cumulative_sizes = [0] + dataset.cumulative_sizes | |
self.batch_size = batch_size | |
self.source_ratio = source_ratio | |
self.num_per_source = [ | |
int(batch_size * sr / sum(source_ratio)) for sr in source_ratio | |
] | |
self.num_per_source[0] = batch_size - sum(self.num_per_source[1:]) | |
assert sum(self.num_per_source) == batch_size, \ | |
'The sum of num_per_source must be equal to ' \ | |
f'batch_size, but get {self.num_per_source}' | |
self.seed = sync_random_seed() if seed is None else seed | |
self.shuffle = shuffle | |
self.source2inds = { | |
source: self._indices_of_rank(len(ds)) | |
for source, ds in enumerate(dataset.datasets) | |
} | |
def _infinite_indices(self, sample_size: int) -> Iterator[int]: | |
"""Infinitely yield a sequence of indices.""" | |
g = torch.Generator() | |
g.manual_seed(self.seed) | |
while True: | |
if self.shuffle: | |
yield from torch.randperm(sample_size, generator=g).tolist() | |
else: | |
yield from torch.arange(sample_size).tolist() | |
def _indices_of_rank(self, sample_size: int) -> Iterator[int]: | |
"""Slice the infinite indices by rank.""" | |
yield from itertools.islice( | |
self._infinite_indices(sample_size), self.rank, None, | |
self.world_size) | |
def __iter__(self) -> Iterator[int]: | |
batch_buffer = [] | |
while True: | |
for source, num in enumerate(self.num_per_source): | |
batch_buffer_per_source = [] | |
for idx in self.source2inds[source]: | |
idx += self.cumulative_sizes[source] | |
batch_buffer_per_source.append(idx) | |
if len(batch_buffer_per_source) == num: | |
batch_buffer += batch_buffer_per_source | |
break | |
yield from batch_buffer | |
batch_buffer = [] | |
def __len__(self) -> int: | |
return len(self.dataset) | |
def set_epoch(self, epoch: int) -> None: | |
"""Not supported in `epoch-based runner.""" | |
pass | |
class GroupMultiSourceSampler(MultiSourceSampler): | |
r"""Group Multi-Source Infinite Sampler. | |
According to the sampling ratio, sample data from different | |
datasets but the same group to form batches. | |
Args: | |
dataset (Sized): The dataset. | |
batch_size (int): Size of mini-batch. | |
source_ratio (list[int | float]): The sampling ratio of different | |
source datasets in a mini-batch. | |
shuffle (bool): Whether shuffle the dataset or not. Defaults to True. | |
seed (int, optional): Random seed. If None, set a random seed. | |
Defaults to None. | |
""" | |
def __init__(self, | |
dataset: BaseDataset, | |
batch_size: int, | |
source_ratio: List[Union[int, float]], | |
shuffle: bool = True, | |
seed: Optional[int] = None) -> None: | |
super().__init__( | |
dataset=dataset, | |
batch_size=batch_size, | |
source_ratio=source_ratio, | |
shuffle=shuffle, | |
seed=seed) | |
self._get_source_group_info() | |
self.group_source2inds = [{ | |
source: | |
self._indices_of_rank(self.group2size_per_source[source][group]) | |
for source in range(len(dataset.datasets)) | |
} for group in range(len(self.group_ratio))] | |
def _get_source_group_info(self) -> None: | |
self.group2size_per_source = [{0: 0, 1: 0}, {0: 0, 1: 0}] | |
self.group2inds_per_source = [{0: [], 1: []}, {0: [], 1: []}] | |
for source, dataset in enumerate(self.dataset.datasets): | |
for idx in range(len(dataset)): | |
data_info = dataset.get_data_info(idx) | |
width, height = data_info['width'], data_info['height'] | |
group = 0 if width < height else 1 | |
self.group2size_per_source[source][group] += 1 | |
self.group2inds_per_source[source][group].append(idx) | |
self.group_sizes = np.zeros(2, dtype=np.int64) | |
for group2size in self.group2size_per_source: | |
for group, size in group2size.items(): | |
self.group_sizes[group] += size | |
self.group_ratio = self.group_sizes / sum(self.group_sizes) | |
def __iter__(self) -> Iterator[int]: | |
batch_buffer = [] | |
while True: | |
group = np.random.choice( | |
list(range(len(self.group_ratio))), p=self.group_ratio) | |
for source, num in enumerate(self.num_per_source): | |
batch_buffer_per_source = [] | |
for idx in self.group_source2inds[group][source]: | |
idx = self.group2inds_per_source[source][group][ | |
idx] + self.cumulative_sizes[source] | |
batch_buffer_per_source.append(idx) | |
if len(batch_buffer_per_source) == num: | |
batch_buffer += batch_buffer_per_source | |
break | |
yield from batch_buffer | |
batch_buffer = [] | |