Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Dict, Iterator, Optional, Union | |
import numpy as np | |
import torch | |
from mmengine.dataset import BaseDataset | |
from mmengine.dist import get_dist_info, sync_random_seed | |
from torch.utils.data import Sampler | |
from mmdet.registry import DATA_SAMPLERS | |
class ClassAwareSampler(Sampler): | |
r"""Sampler that restricts data loading to the label of the dataset. | |
A class-aware sampling strategy to effectively tackle the | |
non-uniform class distribution. The length of the training data is | |
consistent with source data. Simple improvements based on `Relay | |
Backpropagation for Effective Learning of Deep Convolutional | |
Neural Networks <https://arxiv.org/abs/1512.05830>`_ | |
The implementation logic is referred to | |
https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py | |
Args: | |
dataset: Dataset used for sampling. | |
seed (int, optional): random seed used to shuffle the sampler. | |
This number should be identical across all | |
processes in the distributed group. Defaults to None. | |
num_sample_class (int): The number of samples taken from each | |
per-label list. Defaults to 1. | |
""" | |
def __init__(self, | |
dataset: BaseDataset, | |
seed: Optional[int] = None, | |
num_sample_class: int = 1) -> None: | |
rank, world_size = get_dist_info() | |
self.rank = rank | |
self.world_size = world_size | |
self.dataset = dataset | |
self.epoch = 0 | |
# Must be the same across all workers. If None, will use a | |
# random seed shared among workers | |
# (require synchronization among all workers) | |
if seed is None: | |
seed = sync_random_seed() | |
self.seed = seed | |
# The number of samples taken from each per-label list | |
assert num_sample_class > 0 and isinstance(num_sample_class, int) | |
self.num_sample_class = num_sample_class | |
# Get per-label image list from dataset | |
self.cat_dict = self.get_cat2imgs() | |
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / world_size)) | |
self.total_size = self.num_samples * self.world_size | |
# get number of images containing each category | |
self.num_cat_imgs = [len(x) for x in self.cat_dict.values()] | |
# filter labels without images | |
self.valid_cat_inds = [ | |
i for i, length in enumerate(self.num_cat_imgs) if length != 0 | |
] | |
self.num_classes = len(self.valid_cat_inds) | |
def get_cat2imgs(self) -> Dict[int, list]: | |
"""Get a dict with class as key and img_ids as values. | |
Returns: | |
dict[int, list]: A dict of per-label image list, | |
the item of the dict indicates a label index, | |
corresponds to the image index that contains the label. | |
""" | |
classes = self.dataset.metainfo.get('classes', None) | |
if classes is None: | |
raise ValueError('dataset metainfo must contain `classes`') | |
# sort the label index | |
cat2imgs = {i: [] for i in range(len(classes))} | |
for i in range(len(self.dataset)): | |
cat_ids = set(self.dataset.get_cat_ids(i)) | |
for cat in cat_ids: | |
cat2imgs[cat].append(i) | |
return cat2imgs | |
def __iter__(self) -> Iterator[int]: | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch + self.seed) | |
# initialize label list | |
label_iter_list = RandomCycleIter(self.valid_cat_inds, generator=g) | |
# initialize each per-label image list | |
data_iter_dict = dict() | |
for i in self.valid_cat_inds: | |
data_iter_dict[i] = RandomCycleIter(self.cat_dict[i], generator=g) | |
def gen_cat_img_inds(cls_list, data_dict, num_sample_cls): | |
"""Traverse the categories and extract `num_sample_cls` image | |
indexes of the corresponding categories one by one.""" | |
id_indices = [] | |
for _ in range(len(cls_list)): | |
cls_idx = next(cls_list) | |
for _ in range(num_sample_cls): | |
id = next(data_dict[cls_idx]) | |
id_indices.append(id) | |
return id_indices | |
# deterministically shuffle based on epoch | |
num_bins = int( | |
math.ceil(self.total_size * 1.0 / self.num_classes / | |
self.num_sample_class)) | |
indices = [] | |
for i in range(num_bins): | |
indices += gen_cat_img_inds(label_iter_list, data_iter_dict, | |
self.num_sample_class) | |
# fix extra samples to make it evenly divisible | |
if len(indices) >= self.total_size: | |
indices = indices[:self.total_size] | |
else: | |
indices += indices[:(self.total_size - len(indices))] | |
assert len(indices) == self.total_size | |
# subsample | |
offset = self.num_samples * self.rank | |
indices = indices[offset:offset + self.num_samples] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def __len__(self) -> int: | |
"""The number of samples in this rank.""" | |
return self.num_samples | |
def set_epoch(self, epoch: int) -> None: | |
"""Sets the epoch for this sampler. | |
When :attr:`shuffle=True`, this ensures all replicas use a different | |
random ordering for each epoch. Otherwise, the next iteration of this | |
sampler will yield the same ordering. | |
Args: | |
epoch (int): Epoch number. | |
""" | |
self.epoch = epoch | |
class RandomCycleIter: | |
"""Shuffle the list and do it again after the list have traversed. | |
The implementation logic is referred to | |
https://github.com/wutong16/DistributionBalancedLoss/blob/master/mllt/datasets/loader/sampler.py | |
Example: | |
>>> label_list = [0, 1, 2, 4, 5] | |
>>> g = torch.Generator() | |
>>> g.manual_seed(0) | |
>>> label_iter_list = RandomCycleIter(label_list, generator=g) | |
>>> index = next(label_iter_list) | |
Args: | |
data (list or ndarray): The data that needs to be shuffled. | |
generator: An torch.Generator object, which is used in setting the seed | |
for generating random numbers. | |
""" # noqa: W605 | |
def __init__(self, | |
data: Union[list, np.ndarray], | |
generator: torch.Generator = None) -> None: | |
self.data = data | |
self.length = len(data) | |
self.index = torch.randperm(self.length, generator=generator).numpy() | |
self.i = 0 | |
self.generator = generator | |
def __iter__(self) -> Iterator: | |
return self | |
def __len__(self) -> int: | |
return len(self.data) | |
def __next__(self): | |
if self.i == self.length: | |
self.index = torch.randperm( | |
self.length, generator=self.generator).numpy() | |
self.i = 0 | |
idx = self.data[self.index[self.i]] | |
self.i += 1 | |
return idx | |