ai-photo-gallery / mmcls /models /utils /data_preprocessor.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import math
from numbers import Number
from typing import Optional, Sequence
import torch
import torch.nn.functional as F
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmcls.registry import MODELS
from mmcls.structures import (ClsDataSample, MultiTaskDataSample,
batch_label_to_onehot, cat_batch_labels,
stack_batch_scores, tensor_split)
from .batch_augments import RandomBatchAugment
@MODELS.register_module()
class ClsDataPreprocessor(BaseDataPreprocessor):
"""Image pre-processor for classification tasks.
Comparing with the :class:`mmengine.model.ImgDataPreprocessor`,
1. It won't do normalization if ``mean`` is not specified.
2. It does normalization and color space conversion after stacking batch.
3. It supports batch augmentations like mixup and cutmix.
It provides the data pre-processing as follows
- Collate and move data to the target device.
- Pad inputs to the maximum size of current batch with defined
``pad_value``. The padding size can be divisible by a defined
``pad_size_divisor``
- Stack inputs to batch_inputs.
- Convert inputs from bgr to rgb if the shape of input is (3, H, W).
- Normalize image with defined std and mean.
- Do batch augmentations like Mixup and Cutmix during training.
Args:
mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
Defaults to None.
std (Sequence[Number], optional): The pixel standard deviation of
R, G, B channels. Defaults to None.
pad_size_divisor (int): The size of padded image should be
divisible by ``pad_size_divisor``. Defaults to 1.
pad_value (Number): The padded pixel value. Defaults to 0.
to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
to_onehot (bool): Whether to generate one-hot format gt-labels and set
to data samples. Defaults to False.
num_classes (int, optional): The number of classes. Defaults to None.
batch_augments (dict, optional): The batch augmentations settings,
including "augments" and "probs". For more details, see
:class:`mmcls.models.RandomBatchAugment`.
"""
def __init__(self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
pad_size_divisor: int = 1,
pad_value: Number = 0,
to_rgb: bool = False,
to_onehot: bool = False,
num_classes: Optional[int] = None,
batch_augments: Optional[dict] = None):
super().__init__()
self.pad_size_divisor = pad_size_divisor
self.pad_value = pad_value
self.to_rgb = to_rgb
self.to_onehot = to_onehot
self.num_classes = num_classes
if mean is not None:
assert std is not None, 'To enable the normalization in ' \
'preprocessing, please specify both `mean` and `std`.'
# Enable the normalization in preprocessing.
self._enable_normalize = True
self.register_buffer('mean',
torch.tensor(mean).view(-1, 1, 1), False)
self.register_buffer('std',
torch.tensor(std).view(-1, 1, 1), False)
else:
self._enable_normalize = False
if batch_augments is not None:
self.batch_augments = RandomBatchAugment(**batch_augments)
if not self.to_onehot:
from mmengine.logging import MMLogger
MMLogger.get_current_instance().info(
'Because batch augmentations are enabled, the data '
'preprocessor automatically enables the `to_onehot` '
'option to generate one-hot format labels.')
self.to_onehot = True
else:
self.batch_augments = None
def forward(self, data: dict, training: bool = False) -> dict:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation based on ``BaseDataPreprocessor``.
Args:
data (dict): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
inputs = self.cast_data(data['inputs'])
if isinstance(inputs, torch.Tensor):
# The branch if use `default_collate` as the collate_fn in the
# dataloader.
# ------ To RGB ------
if self.to_rgb and inputs.size(1) == 3:
inputs = inputs.flip(1)
# -- Normalization ---
inputs = inputs.float()
if self._enable_normalize:
inputs = (inputs - self.mean) / self.std
# ------ Padding -----
if self.pad_size_divisor > 1:
h, w = inputs.shape[-2:]
target_h = math.ceil(
h / self.pad_size_divisor) * self.pad_size_divisor
target_w = math.ceil(
w / self.pad_size_divisor) * self.pad_size_divisor
pad_h = target_h - h
pad_w = target_w - w
inputs = F.pad(inputs, (0, pad_w, 0, pad_h), 'constant',
self.pad_value)
else:
# The branch if use `pseudo_collate` as the collate_fn in the
# dataloader.
processed_inputs = []
for input_ in inputs:
# ------ To RGB ------
if self.to_rgb and input_.size(0) == 3:
input_ = input_.flip(0)
# -- Normalization ---
input_ = input_.float()
if self._enable_normalize:
input_ = (input_ - self.mean) / self.std
processed_inputs.append(input_)
# Combine padding and stack
inputs = stack_batch(processed_inputs, self.pad_size_divisor,
self.pad_value)
data_samples = data.get('data_samples', None)
sample_item = data_samples[0] if data_samples is not None else None
if isinstance(sample_item,
ClsDataSample) and 'gt_label' in sample_item:
gt_labels = [sample.gt_label for sample in data_samples]
batch_label, label_indices = cat_batch_labels(
gt_labels, device=self.device)
batch_score = stack_batch_scores(gt_labels, device=self.device)
if batch_score is None and self.to_onehot:
assert batch_label is not None, \
'Cannot generate onehot format labels because no labels.'
num_classes = self.num_classes or data_samples[0].get(
'num_classes')
assert num_classes is not None, \
'Cannot generate one-hot format labels because not set ' \
'`num_classes` in `data_preprocessor`.'
batch_score = batch_label_to_onehot(batch_label, label_indices,
num_classes)
# ----- Batch Augmentations ----
if training and self.batch_augments is not None:
inputs, batch_score = self.batch_augments(inputs, batch_score)
# ----- scatter labels and scores to data samples ---
if batch_label is not None:
for sample, label in zip(
data_samples, tensor_split(batch_label,
label_indices)):
sample.set_gt_label(label)
if batch_score is not None:
for sample, score in zip(data_samples, batch_score):
sample.set_gt_score(score)
elif isinstance(sample_item, MultiTaskDataSample):
data_samples = self.cast_data(data_samples)
return {'inputs': inputs, 'data_samples': data_samples}