KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks.drop import build_dropout
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils import digit_version
from mmcls.registry import MODELS
from .helpers import to_2tuple
from .layer_scale import LayerScale
# After pytorch v1.10.0, use torch.meshgrid without indexing
# will raise extra warning. For more details,
# refers to https://github.com/pytorch/pytorch/issues/50276
if digit_version(torch.__version__) >= digit_version('1.10.0'):
from functools import partial
torch_meshgrid = partial(torch.meshgrid, indexing='ij')
else:
torch_meshgrid = torch.meshgrid
class WindowMSA(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
attn_drop (float, optional): Dropout ratio of attention weight.
Defaults to 0.
proj_drop (float, optional): Dropout ratio of output. Defaults to 0.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# About 2x faster than original impl
Wh, Ww = self.window_size
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
rel_position_index = rel_index_coords + rel_index_coords.T
rel_position_index = rel_position_index.flip(1).contiguous()
self.register_buffer('relative_position_index', rel_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def init_weights(self):
super(WindowMSA, self).init_weights()
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C)
mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
Wh*Ww), value should be between (-inf, 0].
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def double_step_seq(step1, len1, step2, len2):
seq1 = torch.arange(0, step1 * len1, step1)
seq2 = torch.arange(0, step2 * len2, step2)
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
class WindowMSAV2(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Based on implementation on Swin Transformer V2 original repo. Refers to
https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer_v2.py
for more details.
Args:
embed_dims (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
attn_drop (float): Dropout ratio of attention weight.
Defaults to 0.
proj_drop (float): Dropout ratio of output. Defaults to 0.
cpb_mlp_hidden_dims (int): The hidden dimensions of the continuous
relative position bias network. Defaults to 512.
pretrained_window_size (tuple(int)): The height and width of the window
in pre-training. Defaults to (0, 0), which means not load
pretrained model.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
window_size,
num_heads,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
cpb_mlp_hidden_dims=512,
pretrained_window_size=(0, 0),
init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
# Use small network for continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(
in_features=2, out_features=cpb_mlp_hidden_dims, bias=True),
nn.ReLU(inplace=True),
nn.Linear(
in_features=cpb_mlp_hidden_dims,
out_features=num_heads,
bias=False))
# Add learnable scalar for cosine attention
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# get relative_coords_table
relative_coords_h = torch.arange(
-(self.window_size[0] - 1),
self.window_size[0],
dtype=torch.float32)
relative_coords_w = torch.arange(
-(self.window_size[1] - 1),
self.window_size[1],
dtype=torch.float32)
relative_coords_table = torch.stack(
torch_meshgrid([relative_coords_h, relative_coords_w])).permute(
1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (
pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (
pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer('relative_coords_table', relative_coords_table)
# get pair-wise relative position index
# for each token inside the window
indexes_h = torch.arange(self.window_size[0])
indexes_w = torch.arange(self.window_size[1])
coordinates = torch.stack(
torch_meshgrid([indexes_h, indexes_w]), dim=0) # 2, Wh, Ww
coordinates = torch.flatten(coordinates, start_dim=1) # 2, Wh*Ww
# 2, Wh*Ww, Wh*Ww
relative_coordinates = coordinates[:, :, None] - coordinates[:,
None, :]
relative_coordinates = relative_coordinates.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coordinates[:, :, 0] += self.window_size[
0] - 1 # shift to start from 0
relative_coordinates[:, :, 1] += self.window_size[1] - 1
relative_coordinates[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coordinates.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer('relative_position_index',
relative_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(embed_dims))
self.v_bias = nn.Parameter(torch.zeros(embed_dims))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C)
mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
Wh*Ww), value should be between (-inf, 0].
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(self.q_bias,
torch.zeros_like(self.v_bias,
requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(
self.logit_scale, max=np.log(1. / 0.01)).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(
self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@MODELS.register_module()
class ShiftWindowMSA(BaseModule):
"""Shift Window Multihead Self-Attention Module.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window.
shift_size (int, optional): The shift step of each window towards
right-bottom. If zero, act as regular window-msa. Defaults to 0.
dropout_layer (dict, optional): The dropout_layer used before output.
Defaults to dict(type='DropPath', drop_prob=0.).
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
window_msa (Callable): To build a window multi-head attention module.
Defaults to :class:`WindowMSA`.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
**kwargs: Other keyword arguments to build the window multi-head
attention module.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
shift_size=0,
dropout_layer=dict(type='DropPath', drop_prob=0.),
pad_small_map=False,
window_msa=WindowMSA,
init_cfg=None,
**kwargs):
super().__init__(init_cfg)
self.shift_size = shift_size
self.window_size = window_size
assert 0 <= self.shift_size < self.window_size
self.w_msa = window_msa(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=to_2tuple(self.window_size),
**kwargs,
)
self.drop = build_dropout(dropout_layer)
self.pad_small_map = pad_small_map
def forward(self, query, hw_shape):
B, L, C = query.shape
H, W = hw_shape
assert L == H * W, f"The query length {L} doesn't match the input "\
f'shape ({H}, {W}).'
query = query.view(B, H, W, C)
window_size = self.window_size
shift_size = self.shift_size
if min(H, W) == window_size:
# If not pad small feature map, avoid shifting when the window size
# is equal to the size of feature map. It's to align with the
# behavior of the original implementation.
shift_size = shift_size if self.pad_small_map else 0
elif min(H, W) < window_size:
# In the original implementation, the window size will be shrunk
# to the size of feature map. The behavior is different with
# swin-transformer for downstream tasks. To support dynamic input
# shape, we don't allow this feature.
assert self.pad_small_map, \
f'The input shape ({H}, {W}) is smaller than the window ' \
f'size ({window_size}). Please set `pad_small_map=True`, or ' \
'decrease the `window_size`.'
pad_r = (window_size - W % window_size) % window_size
pad_b = (window_size - H % window_size) % window_size
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
H_pad, W_pad = query.shape[1], query.shape[2]
# cyclic shift
if shift_size > 0:
query = torch.roll(
query, shifts=(-shift_size, -shift_size), dims=(1, 2))
attn_mask = self.get_attn_mask((H_pad, W_pad),
window_size=window_size,
shift_size=shift_size,
device=query.device)
# nW*B, window_size, window_size, C
query_windows = self.window_partition(query, window_size)
# nW*B, window_size*window_size, C
query_windows = query_windows.view(-1, window_size**2, C)
# W-MSA/SW-MSA (nW*B, window_size*window_size, C)
attn_windows = self.w_msa(query_windows, mask=attn_mask)
# merge windows
attn_windows = attn_windows.view(-1, window_size, window_size, C)
# B H' W' C
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad,
window_size)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(
shifted_x, shifts=(shift_size, shift_size), dims=(1, 2))
else:
x = shifted_x
if H != H_pad or W != W_pad:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
x = self.drop(x)
return x
@staticmethod
def window_reverse(windows, H, W, window_size):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
@staticmethod
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size,
window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
windows = windows.view(-1, window_size, window_size, C)
return windows
@staticmethod
def get_attn_mask(hw_shape, window_size, shift_size, device=None):
if shift_size > 0:
img_mask = torch.zeros(1, *hw_shape, 1, device=device)
h_slices = (slice(0, -window_size), slice(-window_size,
-shift_size),
slice(-shift_size, None))
w_slices = (slice(0, -window_size), slice(-window_size,
-shift_size),
slice(-shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
# nW, window_size, window_size, 1
mask_windows = ShiftWindowMSA.window_partition(
img_mask, window_size)
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, -100.0)
attn_mask = attn_mask.masked_fill(attn_mask == 0, 0.0)
else:
attn_mask = None
return attn_mask
class MultiheadAttention(BaseModule):
"""Multi-head Attention Module.
This module implements multi-head attention that supports different input
dims and embed dims. And it also supports a shortcut from ``value``, which
is useful if input dims is not the same with embed dims.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shortcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
input_dims=None,
attn_drop=0.,
proj_drop=0.,
dropout_layer=dict(type='Dropout', drop_prob=0.),
qkv_bias=True,
qk_scale=None,
proj_bias=True,
v_shortcut=False,
use_layer_scale=False,
init_cfg=None):
super(MultiheadAttention, self).__init__(init_cfg=init_cfg)
self.input_dims = input_dims or embed_dims
self.embed_dims = embed_dims
self.num_heads = num_heads
self.v_shortcut = v_shortcut
self.head_dims = embed_dims // num_heads
self.scale = qk_scale or self.head_dims**-0.5
self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.out_drop = build_dropout(dropout_layer)
if use_layer_scale:
self.gamma1 = LayerScale(embed_dims)
else:
self.gamma1 = nn.Identity()
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.embed_dims)
x = self.proj(x)
x = self.out_drop(self.gamma1(self.proj_drop(x)))
if self.v_shortcut:
x = v.squeeze(1) + x
return x
class BEiTAttention(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
The initial implementation is in MMSegmentation.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): The height and width of the window.
use_rel_pos_bias (bool): Whether to use unique relative position bias,
if False, use shared relative position bias defined in backbone.
bias (str): The option to add leanable bias for q, k, v. If bias is
True, it will add leanable bias. If bias is 'qv_bias', it will only
add leanable bias for q, v. If bias is False, it will not add bias
for q, k, v. Default to 'qv_bias'.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float): Dropout ratio of output. Default: 0.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
use_rel_pos_bias,
bias='qv_bias',
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
init_cfg=None,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.bias = bias
self.scale = qk_scale or head_embed_dims**-0.5
qkv_bias = bias
if bias == 'qv_bias':
self._init_qv_bias()
qkv_bias = False
self.window_size = window_size
self.use_rel_pos_bias = use_rel_pos_bias
self._init_rel_pos_embedding()
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
def _init_qv_bias(self):
self.q_bias = nn.Parameter(torch.zeros(self.embed_dims))
self.v_bias = nn.Parameter(torch.zeros(self.embed_dims))
def _init_rel_pos_embedding(self):
if self.use_rel_pos_bias:
Wh, Ww = self.window_size
# cls to token & token 2 cls & cls to cls
self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3
# relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH)
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, self.num_heads))
# get pair-wise relative position index for
# each token inside the window
coords_h = torch.arange(Wh)
coords_w = torch.arange(Ww)
# coords shape is (2, Wh, Ww)
coords = torch.stack(torch_meshgrid([coords_h, coords_w]))
# coords_flatten shape is (2, Wh*Ww)
coords_flatten = torch.flatten(coords, 1)
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :])
# relative_coords shape is (Wh*Ww, Wh*Ww, 2)
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
# shift to start from 0
relative_coords[:, :, 0] += Wh - 1
relative_coords[:, :, 1] += Ww - 1
relative_coords[:, :, 0] *= 2 * Ww - 1
relative_position_index = torch.zeros(
size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype)
# relative_position_index shape is (Wh*Ww, Wh*Ww)
relative_position_index[1:, 1:] = relative_coords.sum(-1)
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer('relative_position_index',
relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
def init_weights(self):
super().init_weights()
if self.use_rel_pos_bias:
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x, rel_pos_bias=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C).
rel_pos_bias (tensor): input relative position bias with shape of
(num_heads, N, N).
"""
B, N, C = x.shape
if self.bias == 'qv_bias':
k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
else:
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
Wh = self.window_size[0]
Ww = self.window_size[1]
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
Wh * Ww + 1, Wh * Ww + 1, -1)
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
# use shared relative position bias
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class ChannelMultiheadAttention(BaseModule):
"""Channel Multihead Self-attention Module.
This module implements channel multi-head attention that supports different
input dims and embed dims.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shoutcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to False.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
qk_scale_type (str): The scale type of qk scale.
Defaults to 'learnable'. It can be 'learnable', 'fixed' or 'none'.
qk_scale (float, optional): If set qk_scale_type to 'none', this
should be specified with valid float number. Defaults to None.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads=8,
input_dims=None,
attn_drop=0.,
proj_drop=0.,
dropout_layer=dict(type='Dropout', drop_prob=0.),
qkv_bias=False,
proj_bias=True,
qk_scale_type='learnable',
qk_scale=None,
v_shortcut=False,
init_cfg=None):
super().__init__(init_cfg)
self.input_dims = input_dims or embed_dims
self.embed_dims = embed_dims
self.num_heads = num_heads
self.v_shortcut = v_shortcut
self.head_dims = embed_dims // num_heads
if qk_scale_type == 'learnable':
self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
elif qk_scale_type == 'fixed':
self.scale = self.head_dims**-0.5
elif qk_scale_type == 'none':
assert qk_scale is not None
self.scale = qk_scale
self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.out_drop = build_dropout(dropout_layer)
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
q, k, v = [item.transpose(-2, -1) for item in [qkv[0], qkv[1], qkv[2]]]
q, k = F.normalize(q, dim=-1), F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, self.embed_dims)
x = self.proj(x)
x = self.out_drop(self.proj_drop(x))
if self.v_shortcut:
x = qkv[2].squeeze(1) + x
return x
class LeAttention(BaseModule):
"""LeViT Attention. Multi-head attention with attention bias, which is
proposed in `LeViT: a Vision Transformer in ConvNet’s Clothing for Faster
Inference<https://arxiv.org/abs/2104.01136>`_
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8.
key_dim (int): Dimension of key. Default: None.
attn_ratio (int): Ratio of attention heads. Default: 8.
resolution (tuple[int]): Input resolution. Default: (16, 16).
init_cfg (dict, optional): The Config for initialization.
"""
def __init__(self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=(14, 14),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
# (h, w)
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(
itertools.product(range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer(
'attention_bias_idxs',
torch.LongTensor(idxs).view(N, N),
persistent=False)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, N, _ = x.shape
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads,
-1).split([self.key_dim, self.key_dim, self.d],
dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = ((q @ k.transpose(-2, -1)) * self.scale +
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab))
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x