ai-photo-gallery / mmcls /models /heads /conformer_head.py
KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence, Tuple
import torch
import torch.nn as nn
from mmcls.evaluation.metrics import Accuracy
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .cls_head import ClsHead
@MODELS.register_module()
class ConformerHead(ClsHead):
"""Linear classifier head.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (Sequence[int]): Number of channels in the input
feature map.
init_cfg (dict | optional): The extra init config of layers.
Defaults to use ``dict(type='Normal', layer='Linear', std=0.01)``.
"""
def __init__(
self,
num_classes: int,
in_channels: Sequence[int], # [conv_dim, trans_dim]
init_cfg: dict = dict(type='TruncNormal', layer='Linear', std=.02),
**kwargs):
super(ConformerHead, self).__init__(init_cfg=init_cfg, **kwargs)
self.in_channels = in_channels
self.num_classes = num_classes
self.init_cfg = init_cfg
if self.num_classes <= 0:
raise ValueError(
f'num_classes={num_classes} must be a positive integer')
self.conv_cls_head = nn.Linear(self.in_channels[0], num_classes)
self.trans_cls_head = nn.Linear(self.in_channels[1], num_classes)
def pre_logits(self, feats: Tuple[List[torch.Tensor]]) -> torch.Tensor:
"""The process before the final classification head.
The input ``feats`` is a tuple of tensor, and each tensor is the
feature of a backbone stage. In ``ConformerHead``, we just obtain the
feature of the last stage.
"""
# The ConformerHead doesn't have other module,
# just return after unpacking.
return feats[-1]
def forward(self, feats: Tuple[List[torch.Tensor]]) -> Tuple[torch.Tensor]:
"""The forward process."""
x = self.pre_logits(feats)
# There are two outputs in the Conformer model
assert len(x) == 2
conv_cls_score = self.conv_cls_head(x[0])
tran_cls_score = self.trans_cls_head(x[1])
return conv_cls_score, tran_cls_score
def predict(
self,
feats: Tuple[List[torch.Tensor]],
data_samples: List[ClsDataSample] = None) -> List[ClsDataSample]:
"""Inference without augmentation.
Args:
feats (tuple[Tensor]): The features extracted from the backbone.
Multiple stage inputs are acceptable but only the last stage
will be used to classify. The shape of every item should be
``(num_samples, num_classes)``.
data_samples (List[ClsDataSample], optional): The annotation
data of every samples. If not None, set ``pred_label`` of
the input data samples. Defaults to None.
Returns:
List[ClsDataSample]: A list of data samples which contains the
predicted results.
"""
# The part can be traced by torch.fx
conv_cls_score, tran_cls_score = self(feats)
cls_score = conv_cls_score + tran_cls_score
# The part can not be traced by torch.fx
predictions = self._get_predictions(cls_score, data_samples)
return predictions
def _get_loss(self, cls_score: Tuple[torch.Tensor],
data_samples: List[ClsDataSample], **kwargs) -> dict:
"""Unpack data samples and compute loss."""
# Unpack data samples and pack targets
if 'score' in data_samples[0].gt_label:
# Batch augmentation may convert labels to one-hot format scores.
target = torch.stack([i.gt_label.score for i in data_samples])
else:
target = torch.cat([i.gt_label.label for i in data_samples])
# compute loss
losses = dict()
loss = sum([
self.loss_module(
score, target, avg_factor=score.size(0), **kwargs)
for score in cls_score
])
losses['loss'] = loss
# compute accuracy
if self.cal_acc:
assert target.ndim == 1, 'If you enable batch augmentation ' \
'like mixup during training, `cal_acc` is pointless.'
acc = Accuracy.calculate(
cls_score[0] + cls_score[1], target, topk=self.topk)
losses.update(
{f'accuracy_top-{k}': a
for k, a in zip(self.topk, acc)})
return losses