KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
16.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from mmcls.registry import MODELS
from ..utils import MultiheadAttention, resize_pos_embed, to_2tuple
from .base_backbone import BaseBackbone
class T2TTransformerLayer(BaseModule):
"""Transformer Layer for T2T_ViT.
Comparing with :obj:`TransformerEncoderLayer` in ViT, it supports
different ``input_dims`` and ``embed_dims``.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs
input_dims (int, optional): The input token dimension.
Defaults to None.
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
num_fcs (int): The number of fully-connected layers for FFNs.
Defaults to 2.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
qk_scale (float, optional): Override default qk scale of
``(input_dims // num_heads) ** -0.5`` if set. Defaults to None.
act_cfg (dict): The activation config for FFNs.
Defaluts to ``dict(type='GELU')``.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
Notes:
In general, ``qk_scale`` should be ``head_dims ** -0.5``, i.e.
``(embed_dims // num_heads) ** -0.5``. However, in the official
code, it uses ``(input_dims // num_heads) ** -0.5``, so here we
keep the same with the official implementation.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
input_dims=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qkv_bias=False,
qk_scale=None,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
init_cfg=None):
super(T2TTransformerLayer, self).__init__(init_cfg=init_cfg)
self.v_shortcut = True if input_dims is not None else False
input_dims = input_dims or embed_dims
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, input_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
self.attn = MultiheadAttention(
input_dims=input_dims,
embed_dims=embed_dims,
num_heads=num_heads,
attn_drop=attn_drop_rate,
proj_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
qkv_bias=qkv_bias,
qk_scale=qk_scale or (input_dims // num_heads)**-0.5,
v_shortcut=self.v_shortcut)
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
self.add_module(self.norm2_name, norm2)
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
act_cfg=act_cfg)
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def forward(self, x):
if self.v_shortcut:
x = self.attn(self.norm1(x))
else:
x = x + self.attn(self.norm1(x))
x = self.ffn(self.norm2(x), identity=x)
return x
class T2TModule(BaseModule):
"""Tokens-to-Token module.
"Tokens-to-Token module" (T2T Module) can model the local structure
information of images and reduce the length of tokens progressively.
Args:
img_size (int): Input image size
in_channels (int): Number of input channels
embed_dims (int): Embedding dimension
token_dims (int): Tokens dimension in T2TModuleAttention.
use_performer (bool): If True, use Performer version self-attention to
adopt regular self-attention. Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Default: None.
Notes:
Usually, ``token_dim`` is set as a small value (32 or 64) to reduce
MACs
"""
def __init__(
self,
img_size=224,
in_channels=3,
embed_dims=384,
token_dims=64,
use_performer=False,
init_cfg=None,
):
super(T2TModule, self).__init__(init_cfg)
self.embed_dims = embed_dims
self.soft_split0 = nn.Unfold(
kernel_size=(7, 7), stride=(4, 4), padding=(2, 2))
self.soft_split1 = nn.Unfold(
kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.soft_split2 = nn.Unfold(
kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
if not use_performer:
self.attention1 = T2TTransformerLayer(
input_dims=in_channels * 7 * 7,
embed_dims=token_dims,
num_heads=1,
feedforward_channels=token_dims)
self.attention2 = T2TTransformerLayer(
input_dims=token_dims * 3 * 3,
embed_dims=token_dims,
num_heads=1,
feedforward_channels=token_dims)
self.project = nn.Linear(token_dims * 3 * 3, embed_dims)
else:
raise NotImplementedError("Performer hasn't been implemented.")
# there are 3 soft split, stride are 4,2,2 separately
out_side = img_size // (4 * 2 * 2)
self.init_out_size = [out_side, out_side]
self.num_patches = out_side**2
@staticmethod
def _get_unfold_size(unfold: nn.Unfold, input_size):
h, w = input_size
kernel_size = to_2tuple(unfold.kernel_size)
stride = to_2tuple(unfold.stride)
padding = to_2tuple(unfold.padding)
dilation = to_2tuple(unfold.dilation)
h_out = (h + 2 * padding[0] - dilation[0] *
(kernel_size[0] - 1) - 1) // stride[0] + 1
w_out = (w + 2 * padding[1] - dilation[1] *
(kernel_size[1] - 1) - 1) // stride[1] + 1
return (h_out, w_out)
def forward(self, x):
# step0: soft split
hw_shape = self._get_unfold_size(self.soft_split0, x.shape[2:])
x = self.soft_split0(x).transpose(1, 2)
for step in [1, 2]:
# re-structurization/reconstruction
attn = getattr(self, f'attention{step}')
x = attn(x).transpose(1, 2)
B, C, _ = x.shape
x = x.reshape(B, C, hw_shape[0], hw_shape[1])
# soft split
soft_split = getattr(self, f'soft_split{step}')
hw_shape = self._get_unfold_size(soft_split, hw_shape)
x = soft_split(x).transpose(1, 2)
# final tokens
x = self.project(x)
return x, hw_shape
def get_sinusoid_encoding(n_position, embed_dims):
"""Generate sinusoid encoding table.
Sinusoid encoding is a kind of relative position encoding method came from
`Attention Is All You Need<https://arxiv.org/abs/1706.03762>`_.
Args:
n_position (int): The length of the input token.
embed_dims (int): The position embedding dimension.
Returns:
:obj:`torch.FloatTensor`: The sinusoid encoding table.
"""
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (i // 2) / embed_dims)
for i in range(embed_dims)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos) for pos in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
@MODELS.register_module()
class T2T_ViT(BaseBackbone):
"""Tokens-to-Token Vision Transformer (T2T-ViT)
A PyTorch implementation of `Tokens-to-Token ViT: Training Vision
Transformers from Scratch on ImageNet <https://arxiv.org/abs/2101.11986>`_
Args:
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to the most
common input image shape. Defaults to 224.
in_channels (int): Number of input channels.
embed_dims (int): Embedding dimension.
num_layers (int): Num of transformer layers in encoder.
Defaults to 14.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
drop_rate (float): Dropout rate after position embedding.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer. Defaults to
``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
with_cls_token (bool): Whether concatenating class token into image
tokens as transformer input. Defaults to True.
output_cls_token (bool): Whether output the cls_token. If set True,
``with_cls_token`` must be True. Defaults to True.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
t2t_cfg (dict): Extra config of Tokens-to-Token module.
Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
num_extra_tokens = 1 # cls_token
def __init__(self,
img_size=224,
in_channels=3,
embed_dims=384,
num_layers=14,
out_indices=-1,
drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN'),
final_norm=True,
with_cls_token=True,
output_cls_token=True,
interpolate_mode='bicubic',
t2t_cfg=dict(),
layer_cfgs=dict(),
init_cfg=None):
super(T2T_ViT, self).__init__(init_cfg)
# Token-to-Token Module
self.tokens_to_token = T2TModule(
img_size=img_size,
in_channels=in_channels,
embed_dims=embed_dims,
**t2t_cfg)
self.patch_resolution = self.tokens_to_token.init_out_size
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
# Set cls token
if output_cls_token:
assert with_cls_token is True, f'with_cls_token must be True if' \
f'set output_cls_token to True, but got {with_cls_token}'
self.with_cls_token = with_cls_token
self.output_cls_token = output_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
# Set position embedding
self.interpolate_mode = interpolate_mode
sinusoid_table = get_sinusoid_encoding(
num_patches + self.num_extra_tokens, embed_dims)
self.register_buffer('pos_embed', sinusoid_table)
self._register_load_state_dict_pre_hook(self._prepare_pos_embed)
self.drop_after_pos = nn.Dropout(p=drop_rate)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must be a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = num_layers + index
assert 0 <= out_indices[i] <= num_layers, \
f'Invalid out_indices {index}'
self.out_indices = out_indices
# stochastic depth decay rule
dpr = [x for x in np.linspace(0, drop_path_rate, num_layers)]
self.encoder = ModuleList()
for i in range(num_layers):
if isinstance(layer_cfgs, Sequence):
layer_cfg = layer_cfgs[i]
else:
layer_cfg = deepcopy(layer_cfgs)
layer_cfg = {
'embed_dims': embed_dims,
'num_heads': 6,
'feedforward_channels': 3 * embed_dims,
'drop_path_rate': dpr[i],
'qkv_bias': False,
'norm_cfg': norm_cfg,
**layer_cfg
}
layer = T2TTransformerLayer(**layer_cfg)
self.encoder.append(layer)
self.final_norm = final_norm
if final_norm:
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
else:
self.norm = nn.Identity()
def init_weights(self):
super().init_weights()
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress custom init if use pretrained model.
return
trunc_normal_(self.cls_token, std=.02)
def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs):
name = prefix + 'pos_embed'
if name not in state_dict.keys():
return
ckpt_pos_embed_shape = state_dict[name].shape
if self.pos_embed.shape != ckpt_pos_embed_shape:
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.info(
f'Resize the pos_embed shape from {ckpt_pos_embed_shape} '
f'to {self.pos_embed.shape}.')
ckpt_pos_embed_shape = to_2tuple(
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
pos_embed_shape = self.tokens_to_token.init_out_size
state_dict[name] = resize_pos_embed(state_dict[name],
ckpt_pos_embed_shape,
pos_embed_shape,
self.interpolate_mode,
self.num_extra_tokens)
def forward(self, x):
B = x.shape[0]
x, patch_resolution = self.tokens_to_token(x)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + resize_pos_embed(
self.pos_embed,
self.patch_resolution,
patch_resolution,
mode=self.interpolate_mode,
num_extra_tokens=self.num_extra_tokens)
x = self.drop_after_pos(x)
if not self.with_cls_token:
# Remove class token for transformer encoder input
x = x[:, 1:]
outs = []
for i, layer in enumerate(self.encoder):
x = layer(x)
if i == len(self.encoder) - 1 and self.final_norm:
x = self.norm(x)
if i in self.out_indices:
B, _, C = x.shape
if self.with_cls_token:
patch_token = x[:, 1:].reshape(B, *patch_resolution, C)
patch_token = patch_token.permute(0, 3, 1, 2)
cls_token = x[:, 0]
else:
patch_token = x.reshape(B, *patch_resolution, C)
patch_token = patch_token.permute(0, 3, 1, 2)
cls_token = None
if self.output_cls_token:
out = [patch_token, cls_token]
else:
out = patch_token
outs.append(out)
return tuple(outs)