KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmengine.model import ModuleList, Sequential
from mmcls.registry import MODELS
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet
class Bottle2neck(_Bottleneck):
expansion = 4
def __init__(self,
in_channels,
out_channels,
scales=4,
base_width=26,
base_channels=64,
stage_type='normal',
**kwargs):
"""Bottle2neck block for Res2Net."""
super(Bottle2neck, self).__init__(in_channels, out_channels, **kwargs)
assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.'
mid_channels = out_channels // self.expansion
width = int(math.floor(mid_channels * (base_width / base_channels)))
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, width * scales, postfix=1)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.out_channels, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.in_channels,
width * scales,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
if stage_type == 'stage':
self.pool = nn.AvgPool2d(
kernel_size=3, stride=self.conv2_stride, padding=1)
self.convs = ModuleList()
self.bns = ModuleList()
for i in range(scales - 1):
self.convs.append(
build_conv_layer(
self.conv_cfg,
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
bias=False))
self.bns.append(
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
self.conv3 = build_conv_layer(
self.conv_cfg,
width * scales,
self.out_channels,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
self.stage_type = stage_type
self.scales = scales
self.width = width
delattr(self, 'conv2')
delattr(self, self.norm2_name)
def forward(self, x):
"""Forward function."""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
sp = self.convs[0](spx[0].contiguous())
sp = self.relu(self.bns[0](sp))
out = sp
for i in range(1, self.scales - 1):
if self.stage_type == 'stage':
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp.contiguous())
sp = self.relu(self.bns[i](sp))
out = torch.cat((out, sp), 1)
if self.stage_type == 'normal' and self.scales != 1:
out = torch.cat((out, spx[self.scales - 1]), 1)
elif self.stage_type == 'stage' and self.scales != 1:
out = torch.cat((out, self.pool(spx[self.scales - 1])), 1)
out = self.conv3(out)
out = self.norm3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
class Res2Layer(Sequential):
"""Res2Layer to build Res2Net style backbone.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottle2neck. Defaults to True.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
scales (int): Scales used in Res2Net. Default: 4
base_width (int): Basic width of each scale. Default: 26
"""
def __init__(self,
block,
in_channels,
out_channels,
num_blocks,
stride=1,
avg_down=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
scales=4,
base_width=26,
**kwargs):
self.block = block
downsample = None
if stride != 1 or in_channels != out_channels:
if avg_down:
downsample = nn.Sequential(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False),
build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=1,
bias=False),
build_norm_layer(norm_cfg, out_channels)[1],
)
else:
downsample = nn.Sequential(
build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(norm_cfg, out_channels)[1],
)
layers = []
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
scales=scales,
base_width=base_width,
stage_type='stage',
**kwargs))
in_channels = out_channels
for _ in range(1, num_blocks):
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
scales=scales,
base_width=base_width,
**kwargs))
super(Res2Layer, self).__init__(*layers)
@MODELS.register_module()
class Res2Net(ResNet):
"""Res2Net backbone.
A PyTorch implement of : `Res2Net: A New Multi-scale Backbone
Architecture <https://arxiv.org/pdf/1904.01169.pdf>`_
Args:
depth (int): Depth of Res2Net, choose from {50, 101, 152}.
scales (int): Scales used in Res2Net. Defaults to 4.
base_width (int): Basic width of each scale. Defaults to 26.
in_channels (int): Number of input image channels. Defaults to 3.
num_stages (int): Number of Res2Net stages. Defaults to 4.
strides (Sequence[int]): Strides of the first block of each stage.
Defaults to ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Defaults to ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages.
Defaults to ``(3, )``.
style (str): "pytorch" or "caffe". If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer. Defaults to "pytorch".
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
Defaults to True.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottle2neck. Defaults to True.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to ``dict(type='BN', requires_grad=True)``.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Defaults to True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
Example:
>>> from mmcls.models import Res2Net
>>> import torch
>>> model = Res2Net(depth=50,
... scales=4,
... base_width=26,
... out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = model.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 256, 8, 8)
(1, 512, 4, 4)
(1, 1024, 2, 2)
(1, 2048, 1, 1)
"""
arch_settings = {
50: (Bottle2neck, (3, 4, 6, 3)),
101: (Bottle2neck, (3, 4, 23, 3)),
152: (Bottle2neck, (3, 8, 36, 3))
}
def __init__(self,
scales=4,
base_width=26,
style='pytorch',
deep_stem=True,
avg_down=True,
init_cfg=None,
**kwargs):
self.scales = scales
self.base_width = base_width
super(Res2Net, self).__init__(
style=style,
deep_stem=deep_stem,
avg_down=avg_down,
init_cfg=init_cfg,
**kwargs)
def make_res_layer(self, **kwargs):
return Res2Layer(
scales=self.scales,
base_width=self.base_width,
base_channels=self.base_channels,
**kwargs)