KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
23.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList, Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.registry import MODELS
from .resnet import BasicBlock, Bottleneck, ResLayer, get_expansion
class HRModule(BaseModule):
"""High-Resolution Module for HRNet.
In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange
is in this module.
Args:
num_branches (int): The number of branches.
block (``BaseModule``): Convolution block module.
num_blocks (tuple): The number of blocks in each branch.
The length must be equal to ``num_branches``.
num_channels (tuple): The number of base channels in each branch.
The length must be equal to ``num_branches``.
multiscale_output (bool): Whether to output multi-level features
produced by multiple branches. If False, only the first level
feature will be output. Defaults to True.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
conv_cfg (dict, optional): Dictionary to construct and config conv
layer. Defaults to None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to ``dict(type='BN')``.
block_init_cfg (dict, optional): The initialization configs of every
blocks. Defaults to None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
num_branches,
block,
num_blocks,
in_channels,
num_channels,
multiscale_output=True,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
block_init_cfg=None,
init_cfg=None):
super(HRModule, self).__init__(init_cfg)
self.block_init_cfg = block_init_cfg
self._check_branches(num_branches, num_blocks, in_channels,
num_channels)
self.in_channels = in_channels
self.num_branches = num_branches
self.multiscale_output = multiscale_output
self.norm_cfg = norm_cfg
self.conv_cfg = conv_cfg
self.with_cp = with_cp
self.branches = self._make_branches(num_branches, block, num_blocks,
num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=False)
def _check_branches(self, num_branches, num_blocks, in_channels,
num_channels):
if num_branches != len(num_blocks):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_BLOCKS({len(num_blocks)})'
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_CHANNELS({len(num_channels)})'
raise ValueError(error_msg)
if num_branches != len(in_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_INCHANNELS({len(in_channels)})'
raise ValueError(error_msg)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
out_channels = num_channels[i] * get_expansion(block)
branches.append(
ResLayer(
block=block,
num_blocks=num_blocks[i],
in_channels=self.in_channels[i],
out_channels=out_channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
with_cp=self.with_cp,
init_cfg=self.block_init_cfg,
))
return ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
in_channels = self.in_channels
fuse_layers = []
num_out_branches = num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(num_branches):
if j > i:
# Upsample the feature maps of smaller scales.
fuse_layer.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False),
build_norm_layer(self.norm_cfg, in_channels[i])[1],
nn.Upsample(
scale_factor=2**(j - i), mode='nearest')))
elif j == i:
# Keep the feature map with the same scale.
fuse_layer.append(None)
else:
# Downsample the feature maps of larger scales.
conv_downsamples = []
for k in range(i - j):
# Use stacked convolution layers to downsample.
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[i])[1]))
else:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[j],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[j])[1],
nn.ReLU(inplace=False)))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def forward(self, x):
"""Forward function."""
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = 0
for j in range(self.num_branches):
if i == j:
y += x[j]
else:
y += self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
@MODELS.register_module()
class HRNet(BaseModule):
"""HRNet backbone.
`High-Resolution Representations for Labeling Pixels and Regions
<https://arxiv.org/abs/1904.04514>`_.
Args:
arch (str): The preset HRNet architecture, includes 'w18', 'w30',
'w32', 'w40', 'w44', 'w48', 'w64'. It will only be used if
extra is ``None``. Defaults to 'w32'.
extra (dict, optional): Detailed configuration for each stage of HRNet.
There must be 4 stages, the configuration for each stage must have
5 keys:
- num_modules (int): The number of HRModule in this stage.
- num_branches (int): The number of branches in the HRModule.
- block (str): The type of convolution block. Please choose between
'BOTTLENECK' and 'BASIC'.
- num_blocks (tuple): The number of blocks in each branch.
The length must be equal to num_branches.
- num_channels (tuple): The number of base channels in each branch.
The length must be equal to num_branches.
Defaults to None.
in_channels (int): Number of input image channels. Defaults to 3.
conv_cfg (dict, optional): Dictionary to construct and config conv
layer. Defaults to None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to ``dict(type='BN')``.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Defaults to False.
multiscale_output (bool): Whether to output multi-level features
produced by multiple branches. If False, only the first level
feature will be output. Defaults to True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
Example:
>>> import torch
>>> from mmcls.models import HRNet
>>> extra = dict(
>>> stage1=dict(
>>> num_modules=1,
>>> num_branches=1,
>>> block='BOTTLENECK',
>>> num_blocks=(4, ),
>>> num_channels=(64, )),
>>> stage2=dict(
>>> num_modules=1,
>>> num_branches=2,
>>> block='BASIC',
>>> num_blocks=(4, 4),
>>> num_channels=(32, 64)),
>>> stage3=dict(
>>> num_modules=4,
>>> num_branches=3,
>>> block='BASIC',
>>> num_blocks=(4, 4, 4),
>>> num_channels=(32, 64, 128)),
>>> stage4=dict(
>>> num_modules=3,
>>> num_branches=4,
>>> block='BASIC',
>>> num_blocks=(4, 4, 4, 4),
>>> num_channels=(32, 64, 128, 256)))
>>> self = HRNet(extra, in_channels=1)
>>> self.eval()
>>> inputs = torch.rand(1, 1, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 32, 8, 8)
(1, 64, 4, 4)
(1, 128, 2, 2)
(1, 256, 1, 1)
"""
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}
arch_zoo = {
# num_modules, num_branches, block, num_blocks, num_channels
'w18': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (18, 36)],
[4, 3, 'BASIC', (4, 4, 4), (18, 36, 72)],
[3, 4, 'BASIC', (4, 4, 4, 4), (18, 36, 72, 144)]],
'w30': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (30, 60)],
[4, 3, 'BASIC', (4, 4, 4), (30, 60, 120)],
[3, 4, 'BASIC', (4, 4, 4, 4), (30, 60, 120, 240)]],
'w32': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (32, 64)],
[4, 3, 'BASIC', (4, 4, 4), (32, 64, 128)],
[3, 4, 'BASIC', (4, 4, 4, 4), (32, 64, 128, 256)]],
'w40': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (40, 80)],
[4, 3, 'BASIC', (4, 4, 4), (40, 80, 160)],
[3, 4, 'BASIC', (4, 4, 4, 4), (40, 80, 160, 320)]],
'w44': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (44, 88)],
[4, 3, 'BASIC', (4, 4, 4), (44, 88, 176)],
[3, 4, 'BASIC', (4, 4, 4, 4), (44, 88, 176, 352)]],
'w48': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (48, 96)],
[4, 3, 'BASIC', (4, 4, 4), (48, 96, 192)],
[3, 4, 'BASIC', (4, 4, 4, 4), (48, 96, 192, 384)]],
'w64': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (64, 128)],
[4, 3, 'BASIC', (4, 4, 4), (64, 128, 256)],
[3, 4, 'BASIC', (4, 4, 4, 4), (64, 128, 256, 512)]],
} # yapf:disable
def __init__(self,
arch='w32',
extra=None,
in_channels=3,
conv_cfg=None,
norm_cfg=dict(type='BN'),
norm_eval=False,
with_cp=False,
zero_init_residual=False,
multiscale_output=True,
init_cfg=[
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]):
super(HRNet, self).__init__(init_cfg)
extra = self.parse_arch(arch, extra)
# Assert configurations of 4 stages are in extra
for i in range(1, 5):
assert f'stage{i}' in extra, f'Missing stage{i} config in "extra".'
# Assert whether the length of `num_blocks` and `num_channels` are
# equal to `num_branches`
cfg = extra[f'stage{i}']
assert len(cfg['num_blocks']) == cfg['num_branches'] and \
len(cfg['num_channels']) == cfg['num_branches']
self.extra = extra
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.zero_init_residual = zero_init_residual
# -------------------- stem net --------------------
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
out_channels=64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
self.conv_cfg,
in_channels=64,
out_channels=64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
# -------------------- stage 1 --------------------
self.stage1_cfg = self.extra['stage1']
base_channels = self.stage1_cfg['num_channels']
block_type = self.stage1_cfg['block']
num_blocks = self.stage1_cfg['num_blocks']
block = self.blocks_dict[block_type]
num_channels = [
channel * get_expansion(block) for channel in base_channels
]
# To align with the original code, use layer1 instead of stage1 here.
self.layer1 = ResLayer(
block,
in_channels=64,
out_channels=num_channels[0],
num_blocks=num_blocks[0])
pre_num_channels = num_channels
# -------------------- stage 2~4 --------------------
for i in range(2, 5):
stage_cfg = self.extra[f'stage{i}']
base_channels = stage_cfg['num_channels']
block = self.blocks_dict[stage_cfg['block']]
multiscale_output_ = multiscale_output if i == 4 else True
num_channels = [
channel * get_expansion(block) for channel in base_channels
]
# The transition layer from layer1 to stage2
transition = self._make_transition_layer(pre_num_channels,
num_channels)
self.add_module(f'transition{i-1}', transition)
stage = self._make_stage(
stage_cfg, num_channels, multiscale_output=multiscale_output_)
self.add_module(f'stage{i}', stage)
pre_num_channels = num_channels
@property
def norm1(self):
"""nn.Module: the normalization layer named "norm1" """
return getattr(self, self.norm1_name)
@property
def norm2(self):
"""nn.Module: the normalization layer named "norm2" """
return getattr(self, self.norm2_name)
def _make_transition_layer(self, num_channels_pre_layer,
num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
# For existing scale branches,
# add conv block when the channels are not the same.
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
num_channels_cur_layer[i])[1],
nn.ReLU(inplace=True)))
else:
transition_layers.append(nn.Identity())
else:
# For new scale branches, add stacked downsample conv blocks.
# For example, num_branches_pre = 2, for the 4th branch, add
# stacked two downsample conv blocks.
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
in_channels = num_channels_pre_layer[-1]
out_channels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else in_channels
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, out_channels)[1],
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.ModuleList(transition_layers)
def _make_stage(self, layer_config, in_channels, multiscale_output=True):
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
hr_modules = []
block_init_cfg = None
if self.zero_init_residual:
if block is BasicBlock:
block_init_cfg = dict(
type='Constant', val=0, override=dict(name='norm2'))
elif block is Bottleneck:
block_init_cfg = dict(
type='Constant', val=0, override=dict(name='norm3'))
for i in range(num_modules):
# multi_scale_output is only used for the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
hr_modules.append(
HRModule(
num_branches,
block,
num_blocks,
in_channels,
num_channels,
reset_multiscale_output,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
block_init_cfg=block_init_cfg))
return Sequential(*hr_modules)
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = [x]
for i in range(2, 5):
# Apply transition
transition = getattr(self, f'transition{i-1}')
inputs = []
for j, layer in enumerate(transition):
if j < len(x_list):
inputs.append(layer(x_list[j]))
else:
inputs.append(layer(x_list[-1]))
# Forward HRModule
stage = getattr(self, f'stage{i}')
x_list = stage(inputs)
return tuple(x_list)
def train(self, mode=True):
"""Convert the model into training mode will keeping the normalization
layer freezed."""
super(HRNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def parse_arch(self, arch, extra=None):
if extra is not None:
return extra
assert arch in self.arch_zoo, \
('Invalid arch, please choose arch from '
f'{list(self.arch_zoo.keys())}, or specify `extra` '
'argument directly.')
extra = dict()
for i, stage_setting in enumerate(self.arch_zoo[arch], start=1):
extra[f'stage{i}'] = dict(
num_modules=stage_setting[0],
num_branches=stage_setting[1],
block=stage_setting[2],
num_blocks=stage_setting[3],
num_channels=stage_setting[4],
)
return extra