KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
18.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
# Adapted from official impl at https://github.com/raoyongming/HorNet.
try:
import torch.fft
fft = True
except ImportError:
fft = None
import copy
from functools import partial
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from mmcv.cnn.bricks import DropPath
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.registry import MODELS
from ..utils import LayerScale
def get_dwconv(dim, kernel_size, bias=True):
"""build a pepth-wise convolution."""
return nn.Conv2d(
dim,
dim,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
bias=bias,
groups=dim)
class HorNetLayerNorm(nn.Module):
"""An implementation of LayerNorm of HorNet.
The differences between HorNetLayerNorm & torch LayerNorm:
1. Supports two data formats channels_last or channels_first.
Args:
normalized_shape (int or list or torch.Size): input shape from an
expected input of size.
eps (float): a value added to the denominator for numerical stability.
Defaults to 1e-5.
data_format (str): The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with
shape (batch_size, channels, height, width).
Defaults to 'channels_last'.
"""
def __init__(self,
normalized_shape,
eps=1e-6,
data_format='channels_last'):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise ValueError(
'data_format must be channels_last or channels_first')
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight,
self.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GlobalLocalFilter(nn.Module):
"""A GlobalLocalFilter of HorNet.
Args:
dim (int): Number of input channels.
h (int): Height of complex_weight.
Defaults to 14.
w (int): Width of complex_weight.
Defaults to 8.
"""
def __init__(self, dim, h=14, w=8):
super().__init__()
self.dw = nn.Conv2d(
dim // 2,
dim // 2,
kernel_size=3,
padding=1,
bias=False,
groups=dim // 2)
self.complex_weight = nn.Parameter(
torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
self.pre_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.post_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
def forward(self, x):
x = self.pre_norm(x)
x1, x2 = torch.chunk(x, 2, dim=1)
x1 = self.dw(x1)
x2 = x2.to(torch.float32)
B, C, a, b = x2.shape
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
weight = self.complex_weight
if not weight.shape[1:3] == x2.shape[2:4]:
weight = F.interpolate(
weight.permute(3, 0, 1, 2),
size=x2.shape[2:4],
mode='bilinear',
align_corners=True).permute(1, 2, 3, 0)
weight = torch.view_as_complex(weight.contiguous())
x2 = x2 * weight
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)],
dim=2).reshape(B, 2 * C, a, b)
x = self.post_norm(x)
return x
class gnConv(nn.Module):
"""A gnConv of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0):
super().__init__()
self.order = order
self.dims = [dim // 2**i for i in range(order)]
self.dims.reverse()
self.proj_in = nn.Conv2d(dim, 2 * dim, 1)
cfg = copy.deepcopy(dw_cfg)
dw_type = cfg.pop('type')
assert dw_type in ['DW', 'GF'],\
'dw_type should be `DW` or `GF`'
if dw_type == 'DW':
self.dwconv = get_dwconv(sum(self.dims), **cfg)
elif dw_type == 'GF':
self.dwconv = GlobalLocalFilter(sum(self.dims), **cfg)
self.proj_out = nn.Conv2d(dim, dim, 1)
self.projs = nn.ModuleList([
nn.Conv2d(self.dims[i], self.dims[i + 1], 1)
for i in range(order - 1)
])
self.scale = scale
def forward(self, x):
x = self.proj_in(x)
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1)
x = self.dwconv(x) * self.scale
dw_list = torch.split(x, self.dims, dim=1)
x = y * dw_list[0]
for i in range(self.order - 1):
x = self.projs[i](x) * dw_list[i + 1]
x = self.proj_out(x)
return x
class HorNetBlock(nn.Module):
"""A block of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0,
drop_path_rate=0.,
use_layer_scale=True):
super().__init__()
self.out_channels = dim
self.norm1 = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.gnconv = gnConv(dim, order, dw_cfg, scale)
self.norm2 = HorNetLayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
if use_layer_scale:
self.gamma1 = LayerScale(dim, data_format='channels_first')
self.gamma2 = LayerScale(dim)
else:
self.gamma1, self.gamma2 = nn.Identity(), nn.Identity()
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.gamma1(self.gnconv(self.norm1(x))))
input = x
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm2(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
x = self.gamma2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
@MODELS.register_module()
class HorNet(BaseBackbone):
"""HorNet backbone.
A PyTorch implementation of paper `HorNet: Efficient High-Order Spatial
Interactions with Recursive Gated Convolutions
<https://arxiv.org/abs/2207.14284>`_ .
Inspiration from https://github.com/raoyongming/HorNet
Args:
arch (str | dict): HorNet architecture.
If use string, choose from 'tiny', 'small', 'base' and 'large'.
If use dict, it should have below keys:
- **base_dim** (int): The base dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **orders** (List[int]): The number of order of gnConv in each
stage.
- **dw_cfg** (List[dict]): The Config for dw conv.
Defaults to 'tiny'.
in_channels (int): Number of input image channels. Defaults to 3.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
scale (float): Scaling parameter of gflayer outputs. Defaults to 1/3.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
out_indices (Sequence[int]): Output from which stages.
Default: ``(3, )``.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
gap_before_final_norm (bool): Whether to globally average the feature
map before the final norm layer. In the official repo, it's only
used in classification task. Defaults to True.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['t-gf', 'tiny-gf'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['s', 'small'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['s-gf', 'small-gf'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b', 'base'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['b-gf', 'base-gf'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b-gf384', 'base-gf384'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
**dict.fromkeys(['l', 'large'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['l-gf', 'large-gf'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['l-gf384', 'large-gf384'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
} # yapf: disable
def __init__(self,
arch='tiny',
in_channels=3,
drop_path_rate=0.,
scale=1 / 3,
use_layer_scale=True,
out_indices=(3, ),
frozen_stages=-1,
with_cp=False,
gap_before_final_norm=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if fft is None:
raise RuntimeError(
'Failed to import torch.fft. Please install "torch>=1.7".')
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'base_dim', 'depths', 'orders', 'dw_cfg'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.scale = scale
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.with_cp = with_cp
self.gap_before_final_norm = gap_before_final_norm
base_dim = self.arch_settings['base_dim']
dims = list(map(lambda x: 2**x * base_dim, range(4)))
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4),
HorNetLayerNorm(dims[0], eps=1e-6, data_format='channels_first'))
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
HorNetLayerNorm(
dims[i], eps=1e-6, data_format='channels_first'),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
total_depth = sum(self.arch_settings['depths'])
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
cur_block_idx = 0
self.stages = nn.ModuleList()
for i in range(4):
stage = nn.Sequential(*[
HorNetBlock(
dim=dims[i],
order=self.arch_settings['orders'][i],
dw_cfg=self.arch_settings['dw_cfg'][i],
scale=self.scale,
drop_path_rate=dpr[cur_block_idx + j],
use_layer_scale=use_layer_scale)
for j in range(self.arch_settings['depths'][i])
])
self.stages.append(stage)
cur_block_idx += self.arch_settings['depths'][i]
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
out_indices = list(out_indices)
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = len(self.stages) + index
assert 0 <= out_indices[i] <= len(self.stages), \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
norm_layer = partial(
HorNetLayerNorm, eps=1e-6, data_format='channels_first')
for i_layer in out_indices:
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
def train(self, mode=True):
super(HorNet, self).train(mode)
self._freeze_stages()
def _freeze_stages(self):
for i in range(0, self.frozen_stages + 1):
# freeze patch embed
m = self.downsample_layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
# freeze blocks
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
if i in self.out_indices:
# freeze norm
m = getattr(self, f'norm{i + 1}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def forward(self, x):
outs = []
for i in range(4):
x = self.downsample_layers[i](x)
if self.with_cp:
x = checkpoint.checkpoint_sequential(self.stages[i],
len(self.stages[i]), x)
else:
x = self.stages[i](x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap).flatten(1))
else:
# The output of LayerNorm2d may be discontiguous, which
# may cause some problem in the downstream tasks
outs.append(norm_layer(x).contiguous())
return tuple(outs)