KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
from functools import partial
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn.bricks import ConvModule, DropPath
from mmengine.model import BaseModule, Sequential
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.models.utils import InvertedResidual, SELayer, make_divisible
from mmcls.registry import MODELS
class EdgeResidual(BaseModule):
"""Edge Residual Block.
Args:
in_channels (int): The input channels of this module.
out_channels (int): The output channels of this module.
mid_channels (int): The input channels of the second convolution.
kernel_size (int): The kernel size of the first convolution.
Defaults to 3.
stride (int): The stride of the first convolution. Defaults to 1.
se_cfg (dict, optional): Config dict for se layer. Defaults to None,
which means no se layer.
with_residual (bool): Use residual connection. Defaults to True.
conv_cfg (dict, optional): Config dict for convolution layer.
Defaults to None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='BN')``.
act_cfg (dict): Config dict for activation layer.
Defaults to ``dict(type='ReLU')``.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict | list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels,
kernel_size=3,
stride=1,
se_cfg=None,
with_residual=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
drop_path_rate=0.,
with_cp=False,
init_cfg=None):
super(EdgeResidual, self).__init__(init_cfg=init_cfg)
assert stride in [1, 2]
self.with_cp = with_cp
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.with_se = se_cfg is not None
self.with_residual = (
stride == 1 and in_channels == out_channels and with_residual)
if self.with_se:
assert isinstance(se_cfg, dict)
self.conv1 = ConvModule(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
if self.with_se:
self.se = SELayer(**se_cfg)
self.conv2 = ConvModule(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=None,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x):
def _inner_forward(x):
out = x
out = self.conv1(out)
if self.with_se:
out = self.se(out)
out = self.conv2(out)
if self.with_residual:
return x + self.drop_path(out)
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
def model_scaling(layer_setting, arch_setting):
"""Scaling operation to the layer's parameters according to the
arch_setting."""
# scale width
new_layer_setting = copy.deepcopy(layer_setting)
for layer_cfg in new_layer_setting:
for block_cfg in layer_cfg:
block_cfg[1] = make_divisible(block_cfg[1] * arch_setting[0], 8)
# scale depth
split_layer_setting = [new_layer_setting[0]]
for layer_cfg in new_layer_setting[1:-1]:
tmp_index = [0]
for i in range(len(layer_cfg) - 1):
if layer_cfg[i + 1][1] != layer_cfg[i][1]:
tmp_index.append(i + 1)
tmp_index.append(len(layer_cfg))
for i in range(len(tmp_index) - 1):
split_layer_setting.append(layer_cfg[tmp_index[i]:tmp_index[i +
1]])
split_layer_setting.append(new_layer_setting[-1])
num_of_layers = [len(layer_cfg) for layer_cfg in split_layer_setting[1:-1]]
new_layers = [
int(math.ceil(arch_setting[1] * num)) for num in num_of_layers
]
merge_layer_setting = [split_layer_setting[0]]
for i, layer_cfg in enumerate(split_layer_setting[1:-1]):
if new_layers[i] <= num_of_layers[i]:
tmp_layer_cfg = layer_cfg[:new_layers[i]]
else:
tmp_layer_cfg = copy.deepcopy(layer_cfg) + [layer_cfg[-1]] * (
new_layers[i] - num_of_layers[i])
if tmp_layer_cfg[0][3] == 1 and i != 0:
merge_layer_setting[-1] += tmp_layer_cfg.copy()
else:
merge_layer_setting.append(tmp_layer_cfg.copy())
merge_layer_setting.append(split_layer_setting[-1])
return merge_layer_setting
@MODELS.register_module()
class EfficientNet(BaseBackbone):
"""EfficientNet backbone.
Args:
arch (str): Architecture of efficientnet. Defaults to b0.
out_indices (Sequence[int]): Output from which stages.
Defaults to (6, ).
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
conv_cfg (dict): Config dict for convolution layer.
Defaults to None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Defaults to dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='Swish').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
"""
# Parameters to build layers.
# 'b' represents the architecture of normal EfficientNet family includes
# 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8'.
# 'e' represents the architecture of EfficientNet-EdgeTPU including 'es',
# 'em', 'el'.
# 6 parameters are needed to construct a layer, From left to right:
# - kernel_size: The kernel size of the block
# - out_channel: The number of out_channels of the block
# - se_ratio: The sequeeze ratio of SELayer.
# - stride: The stride of the block
# - expand_ratio: The expand_ratio of the mid_channels
# - block_type: -1: Not a block, 0: InvertedResidual, 1: EdgeResidual
layer_settings = {
'b': [[[3, 32, 0, 2, 0, -1]],
[[3, 16, 4, 1, 1, 0]],
[[3, 24, 4, 2, 6, 0],
[3, 24, 4, 1, 6, 0]],
[[5, 40, 4, 2, 6, 0],
[5, 40, 4, 1, 6, 0]],
[[3, 80, 4, 2, 6, 0],
[3, 80, 4, 1, 6, 0],
[3, 80, 4, 1, 6, 0],
[5, 112, 4, 1, 6, 0],
[5, 112, 4, 1, 6, 0],
[5, 112, 4, 1, 6, 0]],
[[5, 192, 4, 2, 6, 0],
[5, 192, 4, 1, 6, 0],
[5, 192, 4, 1, 6, 0],
[5, 192, 4, 1, 6, 0],
[3, 320, 4, 1, 6, 0]],
[[1, 1280, 0, 1, 0, -1]]
],
'e': [[[3, 32, 0, 2, 0, -1]],
[[3, 24, 0, 1, 3, 1]],
[[3, 32, 0, 2, 8, 1],
[3, 32, 0, 1, 8, 1]],
[[3, 48, 0, 2, 8, 1],
[3, 48, 0, 1, 8, 1],
[3, 48, 0, 1, 8, 1],
[3, 48, 0, 1, 8, 1]],
[[5, 96, 0, 2, 8, 0],
[5, 96, 0, 1, 8, 0],
[5, 96, 0, 1, 8, 0],
[5, 96, 0, 1, 8, 0],
[5, 96, 0, 1, 8, 0],
[5, 144, 0, 1, 8, 0],
[5, 144, 0, 1, 8, 0],
[5, 144, 0, 1, 8, 0],
[5, 144, 0, 1, 8, 0]],
[[5, 192, 0, 2, 8, 0],
[5, 192, 0, 1, 8, 0]],
[[1, 1280, 0, 1, 0, -1]]
]
} # yapf: disable
# Parameters to build different kinds of architecture.
# From left to right: scaling factor for width, scaling factor for depth,
# resolution.
arch_settings = {
'b0': (1.0, 1.0, 224),
'b1': (1.0, 1.1, 240),
'b2': (1.1, 1.2, 260),
'b3': (1.2, 1.4, 300),
'b4': (1.4, 1.8, 380),
'b5': (1.6, 2.2, 456),
'b6': (1.8, 2.6, 528),
'b7': (2.0, 3.1, 600),
'b8': (2.2, 3.6, 672),
'l2': (4.3, 5.3, 800),
'es': (1.0, 1.0, 224),
'em': (1.0, 1.1, 240),
'el': (1.2, 1.4, 300)
}
def __init__(self,
arch='b0',
drop_path_rate=0.,
out_indices=(6, ),
frozen_stages=0,
conv_cfg=dict(type='Conv2dAdaptivePadding'),
norm_cfg=dict(type='BN', eps=1e-3),
act_cfg=dict(type='Swish'),
norm_eval=False,
with_cp=False,
init_cfg=[
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
layer=['_BatchNorm', 'GroupNorm'],
val=1)
]):
super(EfficientNet, self).__init__(init_cfg)
assert arch in self.arch_settings, \
f'"{arch}" is not one of the arch_settings ' \
f'({", ".join(self.arch_settings.keys())})'
self.arch_setting = self.arch_settings[arch]
# layer_settings of arch='l2' is 'b'
self.layer_setting = self.layer_settings['b' if arch ==
'l2' else arch[:1]]
for index in out_indices:
if index not in range(0, len(self.layer_setting)):
raise ValueError('the item in out_indices must in '
f'range(0, {len(self.layer_setting)}). '
f'But received {index}')
if frozen_stages not in range(len(self.layer_setting) + 1):
raise ValueError('frozen_stages must be in range(0, '
f'{len(self.layer_setting) + 1}). '
f'But received {frozen_stages}')
self.drop_path_rate = drop_path_rate
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.layer_setting = model_scaling(self.layer_setting,
self.arch_setting)
block_cfg_0 = self.layer_setting[0][0]
block_cfg_last = self.layer_setting[-1][0]
self.in_channels = make_divisible(block_cfg_0[1], 8)
self.out_channels = block_cfg_last[1]
self.layers = nn.ModuleList()
self.layers.append(
ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=block_cfg_0[0],
stride=block_cfg_0[3],
padding=block_cfg_0[0] // 2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.make_layer()
self.layers.append(
ConvModule(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=block_cfg_last[0],
stride=block_cfg_last[3],
padding=block_cfg_last[0] // 2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
def make_layer(self):
# Without the first and the final conv block.
layer_setting = self.layer_setting[1:-1]
total_num_blocks = sum([len(x) for x in layer_setting])
block_idx = 0
dpr = [
x.item()
for x in torch.linspace(0, self.drop_path_rate, total_num_blocks)
] # stochastic depth decay rule
for layer_cfg in layer_setting:
layer = []
for i, block_cfg in enumerate(layer_cfg):
(kernel_size, out_channels, se_ratio, stride, expand_ratio,
block_type) = block_cfg
mid_channels = int(self.in_channels * expand_ratio)
out_channels = make_divisible(out_channels, 8)
if se_ratio <= 0:
se_cfg = None
else:
se_cfg = dict(
channels=mid_channels,
ratio=expand_ratio * se_ratio,
divisor=1,
act_cfg=(self.act_cfg, dict(type='Sigmoid')))
if block_type == 1: # edge tpu
if i > 0 and expand_ratio == 3:
with_residual = False
expand_ratio = 4
else:
with_residual = True
mid_channels = int(self.in_channels * expand_ratio)
if se_cfg is not None:
se_cfg = dict(
channels=mid_channels,
ratio=se_ratio * expand_ratio,
divisor=1,
act_cfg=(self.act_cfg, dict(type='Sigmoid')))
block = partial(EdgeResidual, with_residual=with_residual)
else:
block = InvertedResidual
layer.append(
block(
in_channels=self.in_channels,
out_channels=out_channels,
mid_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
se_cfg=se_cfg,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
drop_path_rate=dpr[block_idx],
with_cp=self.with_cp))
self.in_channels = out_channels
block_idx += 1
self.layers.append(Sequential(*layer))
def forward(self, x):
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
for i in range(self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
super(EfficientNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()