KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
22 kB
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
from typing import Optional, Sequence
import torch
import torch.nn as nn
from mmcv.cnn.bricks import (ConvModule, DropPath, build_activation_layer,
build_norm_layer)
from mmengine.model import BaseModule, ModuleList, Sequential
from mmcls.registry import MODELS
from ..utils import LayerScale
from .base_backbone import BaseBackbone
from .poolformer import Pooling
class AttentionWithBias(BaseModule):
"""Multi-head Attention Module with attention_bias.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Defaults to 8.
key_dim (int): The dimension of q, k. Defaults to 32.
attn_ratio (float): The dimension of v equals to
``key_dim * attn_ratio``. Defaults to 4.
resolution (int): The height and width of attention_bias.
Defaults to 7.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads=8,
key_dim=32,
attn_ratio=4.,
resolution=7,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.attn_ratio = attn_ratio
self.key_dim = key_dim
self.nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
h = self.dh + self.nh_kd * 2
self.qkv = nn.Linear(embed_dims, h)
self.proj = nn.Linear(self.dh, embed_dims)
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N))
@torch.no_grad()
def train(self, mode=True):
"""change the mode of model."""
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x):
"""forward function.
Args:
x (tensor): input features with shape of (B, N, C)
"""
B, N, _ = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
q, k, v = qkv.split([self.key_dim, self.key_dim, self.d], dim=-1)
attn = ((q @ k.transpose(-2, -1)) * self.scale +
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab))
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
class Flat(nn.Module):
"""Flat the input from (B, C, H, W) to (B, H*W, C)."""
def __init__(self, ):
super().__init__()
def forward(self, x: torch.Tensor):
x = x.flatten(2).transpose(1, 2)
return x
class LinearMlp(BaseModule):
"""Mlp implemented with linear.
The shape of input and output tensor are (B, N, C).
Args:
in_features (int): Dimension of input features.
hidden_features (int): Dimension of hidden features.
out_features (int): Dimension of output features.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='BN')``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
drop (float): Dropout rate. Defaults to 0.0.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_cfg=dict(type='GELU'),
drop=0.,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = build_activation_layer(act_cfg)
self.drop1 = nn.Dropout(drop)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop2 = nn.Dropout(drop)
def forward(self, x):
"""
Args:
x (torch.Tensor): input tensor with shape (B, N, C).
Returns:
torch.Tensor: output tensor with shape (B, N, C).
"""
x = self.drop1(self.act(self.fc1(x)))
x = self.drop2(self.fc2(x))
return x
class ConvMlp(BaseModule):
"""Mlp implemented with 1*1 convolutions.
Args:
in_features (int): Dimension of input features.
hidden_features (int): Dimension of hidden features.
out_features (int): Dimension of output features.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='BN')``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
drop (float): Dropout rate. Defaults to 0.0.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='GELU'),
drop=0.,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = build_activation_layer(act_cfg)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.norm1 = build_norm_layer(norm_cfg, hidden_features)[1]
self.norm2 = build_norm_layer(norm_cfg, out_features)[1]
self.drop = nn.Dropout(drop)
def forward(self, x):
"""
Args:
x (torch.Tensor): input tensor with shape (B, C, H, W).
Returns:
torch.Tensor: output tensor with shape (B, C, H, W).
"""
x = self.act(self.norm1(self.fc1(x)))
x = self.drop(x)
x = self.norm2(self.fc2(x))
x = self.drop(x)
return x
class Meta3D(BaseModule):
"""Meta Former block using 3 dimensions inputs, ``torch.Tensor`` with shape
(B, N, C)."""
def __init__(self,
dim,
mlp_ratio=4.,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
drop=0.,
drop_path=0.,
use_layer_scale=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.norm1 = build_norm_layer(norm_cfg, dim)[1]
self.token_mixer = AttentionWithBias(dim)
self.norm2 = build_norm_layer(norm_cfg, dim)[1]
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = LinearMlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_cfg=act_cfg,
drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
if use_layer_scale:
self.ls1 = LayerScale(dim)
self.ls2 = LayerScale(dim)
else:
self.ls1, self.ls2 = nn.Identity(), nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x))))
x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x))))
return x
class Meta4D(BaseModule):
"""Meta Former block using 4 dimensions inputs, ``torch.Tensor`` with shape
(B, C, H, W)."""
def __init__(self,
dim,
pool_size=3,
mlp_ratio=4.,
act_cfg=dict(type='GELU'),
drop=0.,
drop_path=0.,
use_layer_scale=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.token_mixer = Pooling(pool_size=pool_size)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ConvMlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_cfg=act_cfg,
drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
if use_layer_scale:
self.ls1 = LayerScale(dim, data_format='channels_first')
self.ls2 = LayerScale(dim, data_format='channels_first')
else:
self.ls1, self.ls2 = nn.Identity(), nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.ls1(self.token_mixer(x)))
x = x + self.drop_path(self.ls2(self.mlp(x)))
return x
def basic_blocks(in_channels,
out_channels,
index,
layers,
pool_size=3,
mlp_ratio=4.,
act_cfg=dict(type='GELU'),
drop_rate=.0,
drop_path_rate=0.,
use_layer_scale=True,
vit_num=1,
has_downsamper=False):
"""generate EfficientFormer blocks for a stage."""
blocks = []
if has_downsamper:
blocks.append(
ConvModule(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
bias=True,
norm_cfg=dict(type='BN'),
act_cfg=None))
if index == 3 and vit_num == layers[index]:
blocks.append(Flat())
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
sum(layers) - 1)
if index == 3 and layers[index] - block_idx <= vit_num:
blocks.append(
Meta3D(
out_channels,
mlp_ratio=mlp_ratio,
act_cfg=act_cfg,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
))
else:
blocks.append(
Meta4D(
out_channels,
pool_size=pool_size,
act_cfg=act_cfg,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale))
if index == 3 and layers[index] - block_idx - 1 == vit_num:
blocks.append(Flat())
blocks = nn.Sequential(*blocks)
return blocks
@MODELS.register_module()
class EfficientFormer(BaseBackbone):
"""EfficientFormer.
A PyTorch implementation of EfficientFormer introduced by:
`EfficientFormer: Vision Transformers at MobileNet Speed <https://arxiv.org/abs/2206.01191>`_
Modified from the `official repo
<https://github.com/snap-research/EfficientFormer>`.
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architecture in ``EfficientFormer.arch_settings``. And if dict,
it should include the following 4 keys:
- layers (list[int]): Number of blocks at each stage.
- embed_dims (list[int]): The number of channels at each stage.
- downsamples (list[int]): Has downsample or not in the four stages.
- vit_num (int): The num of vit blocks in the last stage.
Defaults to 'l1'.
in_channels (int): The num of input channels. Defaults to 3.
pool_size (int): The pooling size of ``Meta4D`` blocks. Defaults to 3.
mlp_ratios (int): The dimension ratio of multi-head attention mechanism
in ``Meta4D`` blocks. Defaults to 3.
reshape_last_feat (bool): Whether to reshape the feature map from
(B, N, C) to (B, C, H, W) in the last stage, when the ``vit-num``
in ``arch`` is not 0. Defaults to False. Usually set to True
in downstream tasks.
out_indices (Sequence[int]): Output from which stages.
Defaults to -1.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
drop_rate (float): Dropout rate. Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
use_layer_scale (bool): Whether to use use_layer_scale in MetaFormer
block. Defaults to True.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
Example:
>>> from mmcls.models import EfficientFormer
>>> import torch
>>> inputs = torch.rand((1, 3, 224, 224))
>>> # build EfficientFormer backbone for classification task
>>> model = EfficientFormer(arch="l1")
>>> model.eval()
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 448, 49)
>>> # build EfficientFormer backbone for downstream task
>>> model = EfficientFormer(
>>> arch="l3",
>>> out_indices=(0, 1, 2, 3),
>>> reshape_last_feat=True)
>>> model.eval()
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 64, 56, 56)
(1, 128, 28, 28)
(1, 320, 14, 14)
(1, 512, 7, 7)
""" # noqa: E501
# --layers: [x,x,x,x], numbers of layers for the four stages
# --embed_dims: [x,x,x,x], embedding dims for the four stages
# --downsamples: [x,x,x,x], has downsample or not in the four stages
# --vit_num:(int), the num of vit blocks in the last stage
arch_settings = {
'l1': {
'layers': [3, 2, 6, 4],
'embed_dims': [48, 96, 224, 448],
'downsamples': [False, True, True, True],
'vit_num': 1,
},
'l3': {
'layers': [4, 4, 12, 6],
'embed_dims': [64, 128, 320, 512],
'downsamples': [False, True, True, True],
'vit_num': 4,
},
'l7': {
'layers': [6, 6, 18, 8],
'embed_dims': [96, 192, 384, 768],
'downsamples': [False, True, True, True],
'vit_num': 8,
},
}
def __init__(self,
arch='l1',
in_channels=3,
pool_size=3,
mlp_ratios=4,
reshape_last_feat=False,
out_indices=-1,
frozen_stages=-1,
act_cfg=dict(type='GELU'),
drop_rate=0.,
drop_path_rate=0.,
use_layer_scale=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.num_extra_tokens = 0 # no cls_token, no dist_token
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'Unavailable arch, please choose from ' \
f'({set(self.arch_settings)}) or pass a dict.'
arch = self.arch_settings[arch]
elif isinstance(arch, dict):
default_keys = set(self.arch_settings['l1'].keys())
assert set(arch.keys()) == default_keys, \
f'The arch dict must have {default_keys}, ' \
f'but got {list(arch.keys())}.'
self.layers = arch['layers']
self.embed_dims = arch['embed_dims']
self.downsamples = arch['downsamples']
assert isinstance(self.layers, list) and isinstance(
self.embed_dims, list) and isinstance(self.downsamples, list)
assert len(self.layers) == len(self.embed_dims) == len(
self.downsamples)
self.vit_num = arch['vit_num']
self.reshape_last_feat = reshape_last_feat
assert self.vit_num >= 0, "'vit_num' must be an integer " \
'greater than or equal to 0.'
assert self.vit_num <= self.layers[-1], (
"'vit_num' must be an integer smaller than layer number")
self._make_stem(in_channels, self.embed_dims[0])
# set the main block in network
network = []
for i in range(len(self.layers)):
if i != 0:
in_channels = self.embed_dims[i - 1]
else:
in_channels = self.embed_dims[i]
out_channels = self.embed_dims[i]
stage = basic_blocks(
in_channels,
out_channels,
i,
self.layers,
pool_size=pool_size,
mlp_ratio=mlp_ratios,
act_cfg=act_cfg,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
vit_num=self.vit_num,
use_layer_scale=use_layer_scale,
has_downsamper=self.downsamples[i])
network.append(stage)
self.network = ModuleList(network)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 4 + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
for i_layer in self.out_indices:
if not self.reshape_last_feat and \
i_layer == 3 and self.vit_num > 0:
layer = build_norm_layer(
dict(type='LN'), self.embed_dims[i_layer])[1]
else:
# use GN with 1 group as channel-first LN2D
layer = build_norm_layer(
dict(type='GN', num_groups=1), self.embed_dims[i_layer])[1]
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self.frozen_stages = frozen_stages
self._freeze_stages()
def _make_stem(self, in_channels: int, stem_channels: int):
"""make 2-ConvBNReLu stem layer."""
self.patch_embed = Sequential(
ConvModule(
in_channels,
stem_channels // 2,
kernel_size=3,
stride=2,
padding=1,
bias=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
inplace=True),
ConvModule(
stem_channels // 2,
stem_channels,
kernel_size=3,
stride=2,
padding=1,
bias=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
inplace=True))
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
if idx == len(self.network) - 1:
N, _, H, W = x.shape
if self.downsamples[idx]:
H, W = H // 2, W // 2
x = block(x)
if idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
if idx == len(self.network) - 1 and x.dim() == 3:
# when ``vit-num`` > 0 and in the last stage,
# if `self.reshape_last_feat`` is True, reshape the
# features to `BCHW` format before the final normalization.
# if `self.reshape_last_feat`` is False, do
# normalization directly and permute the features to `BCN`.
if self.reshape_last_feat:
x = x.permute((0, 2, 1)).reshape(N, -1, H, W)
x_out = norm_layer(x)
else:
x_out = norm_layer(x).permute((0, 2, 1))
else:
x_out = norm_layer(x)
outs.append(x_out.contiguous())
return tuple(outs)
def forward(self, x):
# input embedding
x = self.patch_embed(x)
# through stages
x = self.forward_tokens(x)
return x
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
# Include both block and downsample layer.
module = self.network[i]
module.eval()
for param in module.parameters():
param.requires_grad = False
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
norm_layer.eval()
for param in norm_layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(EfficientFormer, self).train(mode)
self._freeze_stages()