KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
15.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from itertools import chain
from typing import Sequence
import torch
import torch.nn as nn
from mmcv.cnn.bricks import DropPath, build_activation_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList, Sequential
from mmengine.registry import MODELS
from ..utils import ChannelMultiheadAttention, PositionEncodingFourier
from .base_backbone import BaseBackbone
from .convnext import ConvNeXtBlock
class SDTAEncoder(BaseModule):
"""A PyTorch implementation of split depth-wise transpose attention (SDTA)
encoder.
Inspiration from
https://github.com/mmaaz60/EdgeNeXt
Args:
in_channel (int): Number of input channels.
drop_path_rate (float): Stochastic depth dropout rate.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
mlp_ratio (int): Number of channels ratio in the MLP.
Defaults to 4.
use_pos_emb (bool): Whether to use position encoding.
Defaults to True.
num_heads (int): Number of heads in the multihead attention.
Defaults to 8.
qkv_bias (bool): Whether to use bias in the multihead attention.
Defaults to True.
attn_drop (float): Dropout rate of the attention.
Defaults to 0.
proj_drop (float): Dropout rate of the projection.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
norm_cfg (dict): Dictionary to construct normalization layer.
Defaults to ``dict(type='LN')``.
act_cfg (dict): Dictionary to construct activation layer.
Defaults to ``dict(type='GELU')``.
scales (int): Number of scales. Default to 1.
"""
def __init__(self,
in_channel,
drop_path_rate=0.,
layer_scale_init_value=1e-6,
mlp_ratio=4,
use_pos_emb=True,
num_heads=8,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
scales=1,
init_cfg=None):
super(SDTAEncoder, self).__init__(init_cfg=init_cfg)
conv_channels = max(
int(math.ceil(in_channel / scales)),
int(math.floor(in_channel // scales)))
self.conv_channels = conv_channels
self.num_convs = scales if scales == 1 else scales - 1
self.conv_modules = ModuleList()
for i in range(self.num_convs):
self.conv_modules.append(
nn.Conv2d(
conv_channels,
conv_channels,
kernel_size=3,
padding=1,
groups=conv_channels))
self.pos_embed = PositionEncodingFourier(
embed_dims=in_channel) if use_pos_emb else None
self.norm_csa = build_norm_layer(norm_cfg, in_channel)[1]
self.gamma_csa = nn.Parameter(
layer_scale_init_value * torch.ones(in_channel),
requires_grad=True) if layer_scale_init_value > 0 else None
self.csa = ChannelMultiheadAttention(
embed_dims=in_channel,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop)
self.norm = build_norm_layer(norm_cfg, in_channel)[1]
self.pointwise_conv1 = nn.Linear(in_channel, mlp_ratio * in_channel)
self.act = build_activation_layer(act_cfg)
self.pointwise_conv2 = nn.Linear(mlp_ratio * in_channel, in_channel)
self.gamma = nn.Parameter(
layer_scale_init_value * torch.ones(in_channel),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
shortcut = x
spx = torch.split(x, self.conv_channels, dim=1)
for i in range(self.num_convs):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.conv_modules[i](sp)
if i == 0:
out = sp
else:
out = torch.cat((out, sp), 1)
x = torch.cat((out, spx[self.num_convs]), 1)
# Channel Self-attention
B, C, H, W = x.shape
x = x.reshape(B, C, H * W).permute(0, 2, 1)
if self.pos_embed:
pos_encoding = self.pos_embed((B, H, W))
pos_encoding = pos_encoding.reshape(B, -1,
x.shape[1]).permute(0, 2, 1)
x += pos_encoding
x = x + self.drop_path(self.gamma_csa * self.csa(self.norm_csa(x)))
x = x.reshape(B, H, W, C)
# Inverted Bottleneck
x = self.norm(x)
x = self.pointwise_conv1(x)
x = self.act(x)
x = self.pointwise_conv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (B, H, W, C) -> (B, C, H, W)
x = shortcut + self.drop_path(x)
return x
@MODELS.register_module()
class EdgeNeXt(BaseBackbone):
"""EdgeNeXt.
A PyTorch implementation of: `EdgeNeXt: Efficiently Amalgamated
CNN-Transformer Architecture for Mobile Vision Applications
<https://arxiv.org/abs/2206.10589>`_
Inspiration from
https://github.com/mmaaz60/EdgeNeXt
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architectures in ``EdgeNeXt.arch_settings``.
And if dict, it should include the following keys:
- channels (list[int]): The number of channels at each stage.
- depths (list[int]): The number of blocks at each stage.
- num_heads (list[int]): The number of heads at each stage.
Defaults to 'xxsmall'.
in_channels (int): The number of input channels.
Defaults to 3.
global_blocks (list[int]): The number of global blocks.
Defaults to [0, 1, 1, 1].
global_block_type (list[str]): The type of global blocks.
Defaults to ['None', 'SDTA', 'SDTA', 'SDTA'].
drop_path_rate (float): Stochastic depth dropout rate.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
linear_pw_conv (bool): Whether to use linear layer to do pointwise
convolution. Defaults to False.
mlp_ratio (int): The number of channel ratio in MLP layers.
Defaults to 4.
conv_kernel_size (list[int]): The kernel size of convolutional layers
at each stage. Defaults to [3, 5, 7, 9].
use_pos_embd_csa (list[bool]): Whether to use positional embedding in
Channel Self-Attention. Defaults to [False, True, False, False].
use_pos_emebd_global (bool): Whether to use positional embedding for
whole network. Defaults to False.
d2_scales (list[int]): The number of channel groups used for SDTA at
each stage. Defaults to [2, 2, 3, 4].
norm_cfg (dict): The config of normalization layer.
Defaults to ``dict(type='LN2d', eps=1e-6)``.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
gap_before_final_norm (bool): Whether to globally average the feature
map before the final norm layer. Defaults to True.
act_cfg (dict): The config of activation layer.
Defaults to ``dict(type='GELU')``.
init_cfg (dict, optional): Config for initialization.
Defaults to None.
"""
arch_settings = {
'xxsmall': { # parameters: 1.3M
'channels': [24, 48, 88, 168],
'depths': [2, 2, 6, 2],
'num_heads': [4, 4, 4, 4]
},
'xsmall': { # parameters: 2.3M
'channels': [32, 64, 100, 192],
'depths': [3, 3, 9, 3],
'num_heads': [4, 4, 4, 4]
},
'small': { # parameters: 5.6M
'channels': [48, 96, 160, 304],
'depths': [3, 3, 9, 3],
'num_heads': [8, 8, 8, 8]
},
'base': { # parameters: 18.51M
'channels': [80, 160, 288, 584],
'depths': [3, 3, 9, 3],
'num_heads': [8, 8, 8, 8]
},
}
def __init__(self,
arch='xxsmall',
in_channels=3,
global_blocks=[0, 1, 1, 1],
global_block_type=['None', 'SDTA', 'SDTA', 'SDTA'],
drop_path_rate=0.,
layer_scale_init_value=1e-6,
linear_pw_conv=True,
mlp_ratio=4,
conv_kernel_sizes=[3, 5, 7, 9],
use_pos_embd_csa=[False, True, False, False],
use_pos_embd_global=False,
d2_scales=[2, 2, 3, 4],
norm_cfg=dict(type='LN2d', eps=1e-6),
out_indices=-1,
frozen_stages=0,
gap_before_final_norm=True,
act_cfg=dict(type='GELU'),
init_cfg=None):
super(EdgeNeXt, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in self.arch_settings, \
f'Arch {arch} is not in default archs ' \
f'{set(self.arch_settings)}'
self.arch_settings = self.arch_settings[arch]
elif isinstance(arch, dict):
essential_keys = {'channels', 'depths', 'num_heads'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.channels = self.arch_settings['channels']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.num_layers = len(self.depths)
self.use_pos_embd_global = use_pos_embd_global
for g in global_block_type:
assert g in ['None',
'SDTA'], f'Global block type {g} is not supported'
self.num_stages = len(self.depths)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 4 + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.gap_before_final_norm = gap_before_final_norm
if self.use_pos_embd_global:
self.pos_embed = PositionEncodingFourier(
embed_dims=self.channels[0])
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, drop_path_rate, sum(self.depths))
]
self.downsample_layers = ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, self.channels[0], kernel_size=4, stride=4),
build_norm_layer(norm_cfg, self.channels[0])[1],
)
self.downsample_layers.append(stem)
self.stages = ModuleList()
block_idx = 0
for i in range(self.num_stages):
depth = self.depths[i]
channels = self.channels[i]
if i >= 1:
downsample_layer = nn.Sequential(
build_norm_layer(norm_cfg, self.channels[i - 1])[1],
nn.Conv2d(
self.channels[i - 1],
channels,
kernel_size=2,
stride=2,
))
self.downsample_layers.append(downsample_layer)
stage_blocks = []
for j in range(depth):
if j > depth - global_blocks[i] - 1:
stage_blocks.append(
SDTAEncoder(
in_channel=channels,
drop_path_rate=dpr[block_idx + j],
mlp_ratio=mlp_ratio,
scales=d2_scales[i],
use_pos_emb=use_pos_embd_csa[i],
num_heads=self.num_heads[i],
))
else:
dw_conv_cfg = dict(
kernel_size=conv_kernel_sizes[i],
padding=conv_kernel_sizes[i] // 2,
)
stage_blocks.append(
ConvNeXtBlock(
in_channels=channels,
dw_conv_cfg=dw_conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
linear_pw_conv=linear_pw_conv,
drop_path_rate=dpr[block_idx + j],
layer_scale_init_value=layer_scale_init_value,
))
block_idx += depth
stage_blocks = Sequential(*stage_blocks)
self.stages.append(stage_blocks)
if i in self.out_indices:
out_norm_cfg = dict(type='LN') if self.gap_before_final_norm \
else norm_cfg
norm_layer = build_norm_layer(out_norm_cfg, channels)[1]
self.add_module(f'norm{i}', norm_layer)
def init_weights(self) -> None:
# TODO: need to be implemented in the future
return super().init_weights()
def forward(self, x):
outs = []
for i, stage in enumerate(self.stages):
x = self.downsample_layers[i](x)
x = stage(x)
if self.pos_embed and i == 0:
B, _, H, W = x.shape
x += self.pos_embed((B, H, W))
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap.flatten(1)))
else:
# The output of LayerNorm2d may be discontiguous, which
# may cause some problem in the downstream tasks
outs.append(norm_layer(x).contiguous())
return tuple(outs)
def _freeze_stages(self):
for i in range(self.frozen_stages):
downsample_layer = self.downsample_layers[i]
stage = self.stages[i]
downsample_layer.eval()
stage.eval()
for param in chain(downsample_layer.parameters(),
stage.parameters()):
param.requires_grad = False
def train(self, mode=True):
super(EdgeNeXt, self).train(mode)
self._freeze_stages()