Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Sequence | |
import numpy as np | |
import torch | |
from mmcv.cnn import Linear, build_activation_layer, build_norm_layer | |
from mmcv.cnn.bricks.drop import build_dropout | |
from mmcv.cnn.bricks.transformer import PatchEmbed | |
from mmengine.model import BaseModule, ModuleList, Sequential | |
from mmengine.utils import deprecated_api_warning | |
from torch import nn | |
from mmcls.registry import MODELS | |
from ..utils import LayerScale, MultiheadAttention, resize_pos_embed, to_2tuple | |
from .vision_transformer import VisionTransformer | |
class DeiT3FFN(BaseModule): | |
"""FFN for DeiT3. | |
The differences between DeiT3FFN & FFN: | |
1. Use LayerScale. | |
Args: | |
embed_dims (int): The feature dimension. Same as | |
`MultiheadAttention`. Defaults: 256. | |
feedforward_channels (int): The hidden dimension of FFNs. | |
Defaults: 1024. | |
num_fcs (int, optional): The number of fully-connected layers in | |
FFNs. Default: 2. | |
act_cfg (dict, optional): The activation config for FFNs. | |
Default: dict(type='ReLU') | |
ffn_drop (float, optional): Probability of an element to be | |
zeroed in FFN. Default 0.0. | |
add_identity (bool, optional): Whether to add the | |
identity connection. Default: `True`. | |
dropout_layer (obj:`ConfigDict`): The dropout_layer used | |
when adding the shortcut. | |
use_layer_scale (bool): Whether to use layer_scale in | |
DeiT3FFN. Defaults to True. | |
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
embed_dims=256, | |
feedforward_channels=1024, | |
num_fcs=2, | |
act_cfg=dict(type='ReLU', inplace=True), | |
ffn_drop=0., | |
dropout_layer=None, | |
add_identity=True, | |
use_layer_scale=True, | |
init_cfg=None, | |
**kwargs): | |
super().__init__(init_cfg) | |
assert num_fcs >= 2, 'num_fcs should be no less ' \ | |
f'than 2. got {num_fcs}.' | |
self.embed_dims = embed_dims | |
self.feedforward_channels = feedforward_channels | |
self.num_fcs = num_fcs | |
self.act_cfg = act_cfg | |
self.activate = build_activation_layer(act_cfg) | |
layers = [] | |
in_channels = embed_dims | |
for _ in range(num_fcs - 1): | |
layers.append( | |
Sequential( | |
Linear(in_channels, feedforward_channels), self.activate, | |
nn.Dropout(ffn_drop))) | |
in_channels = feedforward_channels | |
layers.append(Linear(feedforward_channels, embed_dims)) | |
layers.append(nn.Dropout(ffn_drop)) | |
self.layers = Sequential(*layers) | |
self.dropout_layer = build_dropout( | |
dropout_layer) if dropout_layer else torch.nn.Identity() | |
self.add_identity = add_identity | |
if use_layer_scale: | |
self.gamma2 = LayerScale(embed_dims) | |
else: | |
self.gamma2 = nn.Identity() | |
def forward(self, x, identity=None): | |
"""Forward function for `FFN`. | |
The function would add x to the output tensor if residue is None. | |
""" | |
out = self.layers(x) | |
out = self.gamma2(out) | |
if not self.add_identity: | |
return self.dropout_layer(out) | |
if identity is None: | |
identity = x | |
return identity + self.dropout_layer(out) | |
class DeiT3TransformerEncoderLayer(BaseModule): | |
"""Implements one encoder layer in DeiT3. | |
The differences between DeiT3TransformerEncoderLayer & | |
TransformerEncoderLayer: | |
1. Use LayerScale. | |
Args: | |
embed_dims (int): The feature dimension | |
num_heads (int): Parallel attention heads | |
feedforward_channels (int): The hidden dimension for FFNs | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
attn_drop_rate (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Defaults to 2. | |
qkv_bias (bool): enable bias for qkv if True. Defaults to True. | |
use_layer_scale (bool): Whether to use layer_scale in | |
DeiT3TransformerEncoderLayer. Defaults to True. | |
act_cfg (dict): The activation config for FFNs. | |
Defaluts to ``dict(type='GELU')``. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
feedforward_channels, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
qkv_bias=True, | |
use_layer_scale=True, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super(DeiT3TransformerEncoderLayer, self).__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.attn = MultiheadAttention( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
qkv_bias=qkv_bias, | |
use_layer_scale=use_layer_scale) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=2) | |
self.add_module(self.norm2_name, norm2) | |
self.ffn = DeiT3FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=feedforward_channels, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg, | |
use_layer_scale=use_layer_scale) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
return getattr(self, self.norm2_name) | |
def init_weights(self): | |
super(DeiT3TransformerEncoderLayer, self).init_weights() | |
for m in self.ffn.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
nn.init.normal_(m.bias, std=1e-6) | |
def forward(self, x): | |
x = x + self.attn(self.norm1(x)) | |
x = self.ffn(self.norm2(x), identity=x) | |
return x | |
class DeiT3(VisionTransformer): | |
"""DeiT3 backbone. | |
A PyTorch implement of : `DeiT III: Revenge of the ViT | |
<https://arxiv.org/pdf/2204.07118.pdf>`_ | |
The differences between DeiT3 & VisionTransformer: | |
1. Use LayerScale. | |
2. Concat cls token after adding pos_embed. | |
Args: | |
arch (str | dict): DeiT3 architecture. If use string, | |
choose from 'small', 'base', 'medium', 'large' and 'huge'. | |
If use dict, it should have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **num_layers** (int): The number of transformer encoder layers. | |
- **num_heads** (int): The number of heads in attention modules. | |
- **feedforward_channels** (int): The hidden dimensions in | |
feedforward modules. | |
Defaults to 'base'. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
in_channels (int): The num of input channels. Defaults to 3. | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Defaults to True. | |
output_cls_token (bool): Whether output the cls_token. If set True, | |
``with_cls_token`` must be True. Defaults to True. | |
use_layer_scale (bool): Whether to use layer_scale in DeiT3. | |
Defaults to True. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys( | |
['s', 'small'], { | |
'embed_dims': 384, | |
'num_layers': 12, | |
'num_heads': 6, | |
'feedforward_channels': 1536, | |
}), | |
**dict.fromkeys( | |
['m', 'medium'], { | |
'embed_dims': 512, | |
'num_layers': 12, | |
'num_heads': 8, | |
'feedforward_channels': 2048, | |
}), | |
**dict.fromkeys( | |
['b', 'base'], { | |
'embed_dims': 768, | |
'num_layers': 12, | |
'num_heads': 12, | |
'feedforward_channels': 3072 | |
}), | |
**dict.fromkeys( | |
['l', 'large'], { | |
'embed_dims': 1024, | |
'num_layers': 24, | |
'num_heads': 16, | |
'feedforward_channels': 4096 | |
}), | |
**dict.fromkeys( | |
['h', 'huge'], { | |
'embed_dims': 1280, | |
'num_layers': 32, | |
'num_heads': 16, | |
'feedforward_channels': 5120 | |
}), | |
} | |
# not using num_extra_tokens in deit3 because adding cls tokens after | |
# adding pos_embed | |
num_extra_tokens = 0 | |
def __init__(self, | |
arch='base', | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
out_indices=-1, | |
drop_rate=0., | |
drop_path_rate=0., | |
qkv_bias=True, | |
norm_cfg=dict(type='LN', eps=1e-6), | |
final_norm=True, | |
with_cls_token=True, | |
output_cls_token=True, | |
use_layer_scale=True, | |
interpolate_mode='bicubic', | |
patch_cfg=dict(), | |
layer_cfgs=dict(), | |
init_cfg=None): | |
super(VisionTransformer, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' | |
} | |
assert isinstance(arch, dict) and essential_keys <= set(arch), \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.num_layers = self.arch_settings['num_layers'] | |
self.img_size = to_2tuple(img_size) | |
# Set patch embedding | |
_patch_cfg = dict( | |
in_channels=in_channels, | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
# Set cls token | |
if output_cls_token: | |
assert with_cls_token is True, f'with_cls_token must be True if' \ | |
f'set output_cls_token to True, but got {with_cls_token}' | |
self.with_cls_token = with_cls_token | |
self.output_cls_token = output_cls_token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) | |
# Set position embedding | |
self.interpolate_mode = interpolate_mode | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, self.embed_dims)) | |
self._register_load_state_dict_pre_hook(self._prepare_pos_embed) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = self.num_layers + index | |
assert 0 <= out_indices[i] <= self.num_layers, \ | |
f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
# stochastic depth decay rule | |
dpr = np.linspace(0, drop_path_rate, self.num_layers) | |
self.layers = ModuleList() | |
if isinstance(layer_cfgs, dict): | |
layer_cfgs = [layer_cfgs] * self.num_layers | |
for i in range(self.num_layers): | |
_layer_cfg = dict( | |
embed_dims=self.embed_dims, | |
num_heads=self.arch_settings['num_heads'], | |
feedforward_channels=self. | |
arch_settings['feedforward_channels'], | |
drop_rate=drop_rate, | |
drop_path_rate=dpr[i], | |
qkv_bias=qkv_bias, | |
norm_cfg=norm_cfg, | |
use_layer_scale=use_layer_scale) | |
_layer_cfg.update(layer_cfgs[i]) | |
self.layers.append(DeiT3TransformerEncoderLayer(**_layer_cfg)) | |
self.final_norm = final_norm | |
if final_norm: | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
def forward(self, x): | |
B = x.shape[0] | |
x, patch_resolution = self.patch_embed(x) | |
x = x + resize_pos_embed( | |
self.pos_embed, | |
self.patch_resolution, | |
patch_resolution, | |
mode=self.interpolate_mode, | |
num_extra_tokens=self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
if not self.with_cls_token: | |
# Remove class token for transformer encoder input | |
x = x[:, 1:] | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i == len(self.layers) - 1 and self.final_norm: | |
x = self.norm1(x) | |
if i in self.out_indices: | |
B, _, C = x.shape | |
if self.with_cls_token: | |
patch_token = x[:, 1:].reshape(B, *patch_resolution, C) | |
patch_token = patch_token.permute(0, 3, 1, 2) | |
cls_token = x[:, 0] | |
else: | |
patch_token = x.reshape(B, *patch_resolution, C) | |
patch_token = patch_token.permute(0, 3, 1, 2) | |
cls_token = None | |
if self.output_cls_token: | |
out = [patch_token, cls_token] | |
else: | |
out = patch_token | |
outs.append(out) | |
return tuple(outs) | |