Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.drop import build_dropout | |
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed | |
from mmengine.model import BaseModule, ModuleList | |
from mmcls.registry import MODELS | |
from ..utils import (BEiTAttention, resize_pos_embed, | |
resize_relative_position_bias_table, to_2tuple) | |
from .vision_transformer import TransformerEncoderLayer, VisionTransformer | |
class RelativePositionBias(BaseModule): | |
"""Relative Position Bias. | |
This module is copied from | |
https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py#L209. | |
Args: | |
window_size (Sequence[int]): The window size of the relative | |
position bias. | |
num_heads (int): The number of head in multi-head attention. | |
with_cls_token (bool): To indicate the backbone has cls_token or not. | |
Defaults to True. | |
""" | |
def __init__( | |
self, | |
window_size: Sequence[int], | |
num_heads: int, | |
with_cls_token: bool = True, | |
) -> None: | |
super().__init__() | |
self.window_size = window_size | |
if with_cls_token: | |
num_extra_tokens = 3 | |
else: | |
num_extra_tokens = 0 | |
# cls to token & token to cls & cls to cls | |
self.num_relative_distance = (2 * window_size[0] - 1) * ( | |
2 * window_size[1] - 1) + num_extra_tokens | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, | |
num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each | |
# token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] -\ | |
coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute( | |
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
if with_cls_token: | |
relative_position_index = torch.zeros( | |
size=(window_size[0] * window_size[1] + 1, ) * 2, | |
dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum( | |
-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
else: | |
relative_position_index = torch.zeros( | |
size=(window_size[0] * window_size[1], ) * 2, | |
dtype=relative_coords.dtype) | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer('relative_position_index', | |
relative_position_index) | |
def forward(self) -> torch.Tensor: | |
# Wh*Ww,Wh*Ww,nH | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) | |
return relative_position_bias.permute( | |
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
class BEiTTransformerEncoderLayer(TransformerEncoderLayer): | |
"""Implements one encoder layer in BEiT. | |
Comparing with conventional ``TransformerEncoderLayer``, this module | |
adds weights to the shortcut connection. In addition, ``BEiTAttention`` | |
is used to replace the original ``MultiheadAttention`` in | |
``TransformerEncoderLayer``. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
layer_scale_init_value (float): The initialization value for | |
the learnable scaling of attention and FFN. 1 means no scaling. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
window_size (tuple[int]): The height and width of the window. | |
Defaults to None. | |
use_rel_pos_bias (bool): Whether to use unique relative position bias, | |
if False, use shared relative position bias defined in backbone. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Defaults to 0.0. | |
drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Defaults to 2. | |
bias (bool | str): The option to add leanable bias for q, k, v. If bias | |
is True, it will add leanable bias. If bias is 'qv_bias', it will | |
only add leanable bias for q, v. If bias is False, it will not add | |
bias for q, k, v. Default to 'qv_bias'. | |
act_cfg (dict): The activation config for FFNs. | |
Defaults to ``dict(type='GELU')``. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to dict(type='LN'). | |
attn_cfg (dict): The configuration for the attention layer. | |
Defaults to an empty dict. | |
ffn_cfg (dict): The configuration for the ffn layer. | |
Defaults to ``dict(add_identity=False)``. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims: int, | |
num_heads: int, | |
feedforward_channels: int, | |
layer_scale_init_value: float, | |
window_size: Tuple[int, int], | |
use_rel_pos_bias: bool, | |
drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
num_fcs: int = 2, | |
bias: Union[str, bool] = 'qv_bias', | |
act_cfg: dict = dict(type='GELU'), | |
norm_cfg: dict = dict(type='LN'), | |
attn_cfg: dict = dict(), | |
ffn_cfg: dict = dict(add_identity=False), | |
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
super().__init__( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
feedforward_channels=feedforward_channels, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=0., | |
drop_rate=0., | |
num_fcs=num_fcs, | |
qkv_bias=bias, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg) | |
attn_cfg = { | |
'window_size': window_size, | |
'use_rel_pos_bias': use_rel_pos_bias, | |
'qk_scale': None, | |
'embed_dims': embed_dims, | |
'num_heads': num_heads, | |
'attn_drop': attn_drop_rate, | |
'proj_drop': drop_rate, | |
'bias': bias, | |
**attn_cfg, | |
} | |
self.attn = BEiTAttention(**attn_cfg) | |
ffn_cfg = { | |
'embed_dims': embed_dims, | |
'feedforward_channels': feedforward_channels, | |
'num_fcs': num_fcs, | |
'ffn_drop': drop_rate, | |
'dropout_layer': dict(type='DropPath', drop_prob=drop_path_rate), | |
'act_cfg': act_cfg, | |
**ffn_cfg, | |
} | |
self.ffn = FFN(**ffn_cfg) | |
# NOTE: drop path for stochastic depth, we shall see if | |
# this is better than dropout here | |
dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate) | |
self.drop_path = build_dropout( | |
dropout_layer) if dropout_layer else nn.Identity() | |
if layer_scale_init_value > 0: | |
self.gamma_1 = nn.Parameter( | |
layer_scale_init_value * torch.ones((embed_dims)), | |
requires_grad=True) | |
self.gamma_2 = nn.Parameter( | |
layer_scale_init_value * torch.ones((embed_dims)), | |
requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x: torch.Tensor, | |
rel_pos_bias: torch.Tensor) -> torch.Tensor: | |
if self.gamma_1 is None: | |
x = x + self.drop_path( | |
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) | |
x = x + self.drop_path(self.ffn(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn( | |
self.norm1(x), rel_pos_bias=rel_pos_bias)) | |
x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x))) | |
return x | |
class BEiT(VisionTransformer): | |
"""Backbone for BEiT. | |
A PyTorch implement of : `BEiT: BERT Pre-Training of Image Transformers | |
<https://arxiv.org/abs/2106.08254>`_ | |
A PyTorch implement of : `BEiT v2: Masked Image Modeling with | |
Vector-Quantized Visual Tokenizers <https://arxiv.org/abs/2208.06366>`_ | |
Args: | |
arch (str | dict): BEiT architecture. If use string, choose from | |
'base', 'large'. If use dict, it should have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **num_layers** (int): The number of transformer encoder layers. | |
- **num_heads** (int): The number of heads in attention modules. | |
- **feedforward_channels** (int): The hidden dimensions in | |
feedforward modules. | |
Defaults to 'base'. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
in_channels (int): The num of input channels. Defaults to 3. | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Defaults to True. | |
avg_token (bool): Whether or not to use the mean patch token for | |
classification. If True, the model will only take the average | |
of all patch tokens. Defaults to False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
output_cls_token (bool): Whether output the cls_token. If set True, | |
``with_cls_token`` must be True. Defaults to True. | |
use_abs_pos_emb (bool): Use position embedding like vanilla ViT. | |
Defaults to False. | |
use_rel_pos_bias (bool): Use relative position embedding in each | |
transformer encoder layer. Defaults to True. | |
use_shared_rel_pos_bias (bool): Use shared relative position embedding, | |
all transformer encoder layers share the same relative position | |
embedding. Defaults to False. | |
layer_scale_init_value (float): The initialization value for | |
the learnable scaling of attention and FFN. Defaults to 0.1. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
arch='base', | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
out_indices=-1, | |
drop_rate=0, | |
drop_path_rate=0, | |
norm_cfg=dict(type='LN', eps=1e-6), | |
final_norm=False, | |
with_cls_token=True, | |
avg_token=True, | |
frozen_stages=-1, | |
output_cls_token=False, | |
use_abs_pos_emb=False, | |
use_rel_pos_bias=True, | |
use_shared_rel_pos_bias=False, | |
layer_scale_init_value=0.1, | |
interpolate_mode='bicubic', | |
patch_cfg=dict(), | |
layer_cfgs=dict(), | |
init_cfg=None): | |
super(VisionTransformer, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' | |
} | |
assert isinstance(arch, dict) and essential_keys <= set(arch), \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.num_layers = self.arch_settings['num_layers'] | |
self.img_size = to_2tuple(img_size) | |
# Set patch embedding | |
_patch_cfg = dict( | |
in_channels=in_channels, | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
# Set cls token | |
if output_cls_token: | |
assert with_cls_token is True, f'with_cls_token must be True if' \ | |
f'set output_cls_token to True, but got {with_cls_token}' | |
self.with_cls_token = with_cls_token | |
self.output_cls_token = output_cls_token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) | |
self.interpolate_mode = interpolate_mode | |
# Set position embedding | |
if use_abs_pos_emb: | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + self.num_extra_tokens, | |
self.embed_dims)) | |
self._register_load_state_dict_pre_hook(self._prepare_pos_embed) | |
else: | |
self.pos_embed = None | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
assert not (use_rel_pos_bias and use_shared_rel_pos_bias), ( | |
'`use_rel_pos_bias` and `use_shared_rel_pos_bias` cannot be set ' | |
'to True at the same time') | |
self.use_rel_pos_bias = use_rel_pos_bias | |
if use_shared_rel_pos_bias: | |
self.rel_pos_bias = RelativePositionBias( | |
window_size=self.patch_resolution, | |
num_heads=self.arch_settings['num_heads']) | |
else: | |
self.rel_pos_bias = None | |
self._register_load_state_dict_pre_hook( | |
self._prepare_relative_position_bias_table) | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = self.num_layers + index | |
assert 0 <= out_indices[i] <= self.num_layers, \ | |
f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
# stochastic depth decay rule | |
dpr = np.linspace(0, drop_path_rate, self.num_layers) | |
self.layers = ModuleList() | |
if isinstance(layer_cfgs, dict): | |
layer_cfgs = [layer_cfgs] * self.num_layers | |
for i in range(self.num_layers): | |
_layer_cfg = dict( | |
embed_dims=self.embed_dims, | |
num_heads=self.arch_settings['num_heads'], | |
feedforward_channels=self. | |
arch_settings['feedforward_channels'], | |
layer_scale_init_value=layer_scale_init_value, | |
window_size=self.patch_resolution, | |
use_rel_pos_bias=use_rel_pos_bias, | |
drop_rate=drop_rate, | |
drop_path_rate=dpr[i], | |
norm_cfg=norm_cfg) | |
_layer_cfg.update(layer_cfgs[i]) | |
self.layers.append(BEiTTransformerEncoderLayer(**_layer_cfg)) | |
self.frozen_stages = frozen_stages | |
self.final_norm = final_norm | |
if final_norm: | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.avg_token = avg_token | |
if avg_token: | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=2) | |
self.add_module(self.norm2_name, norm2) | |
# freeze stages only when self.frozen_stages > 0 | |
if self.frozen_stages > 0: | |
self._freeze_stages() | |
def forward(self, x): | |
B = x.shape[0] | |
x, patch_resolution = self.patch_embed(x) | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.pos_embed is not None: | |
x = x + resize_pos_embed( | |
self.pos_embed, | |
self.patch_resolution, | |
patch_resolution, | |
mode=self.interpolate_mode, | |
num_extra_tokens=self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
rel_pos_bias = self.rel_pos_bias() \ | |
if self.rel_pos_bias is not None else None | |
if not self.with_cls_token: | |
# Remove class token for transformer encoder input | |
x = x[:, 1:] | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x, rel_pos_bias) | |
if i == len(self.layers) - 1 and self.final_norm: | |
x = self.norm1(x) | |
if i in self.out_indices: | |
B, _, C = x.shape | |
if self.with_cls_token: | |
patch_token = x[:, 1:].reshape(B, *patch_resolution, C) | |
patch_token = patch_token.permute(0, 3, 1, 2) | |
cls_token = x[:, 0] | |
else: | |
patch_token = x.reshape(B, *patch_resolution, C) | |
patch_token = patch_token.permute(0, 3, 1, 2) | |
cls_token = None | |
if self.avg_token: | |
patch_token = patch_token.permute(0, 2, 3, 1) | |
patch_token = patch_token.reshape( | |
B, patch_resolution[0] * patch_resolution[1], | |
C).mean(dim=1) | |
patch_token = self.norm2(patch_token) | |
if self.output_cls_token: | |
out = [patch_token, cls_token] | |
else: | |
out = patch_token | |
outs.append(out) | |
return tuple(outs) | |
def _prepare_relative_position_bias_table(self, state_dict, prefix, *args, | |
**kwargs): | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
if self.use_rel_pos_bias and 'rel_pos_bias.relative_position_bias_table' in state_dict: # noqa:E501 | |
logger.info('Expand the shared relative position embedding to ' | |
'each transformer block.') | |
rel_pos_bias = state_dict[ | |
'rel_pos_bias.relative_position_bias_table'] | |
for i in range(self.num_layers): | |
state_dict[ | |
f'layers.{i}.attn.relative_position_bias_table'] = \ | |
rel_pos_bias.clone() | |
state_dict.pop('rel_pos_bias.relative_position_bias_table') | |
state_dict.pop('rel_pos_bias.relative_position_index') | |
state_dict_model = self.state_dict() | |
all_keys = list(state_dict_model.keys()) | |
for key in all_keys: | |
if 'relative_position_bias_table' in key: | |
ckpt_key = prefix + key | |
if ckpt_key not in state_dict: | |
continue | |
rel_pos_bias_pretrained = state_dict[ckpt_key] | |
rel_pos_bias_current = state_dict_model[key] | |
L1, nH1 = rel_pos_bias_pretrained.size() | |
L2, nH2 = rel_pos_bias_current.size() | |
src_size = int((L1 - 3)**0.5) | |
dst_size = int((L2 - 3)**0.5) | |
if L1 != L2: | |
extra_tokens = rel_pos_bias_pretrained[-3:, :] | |
rel_pos_bias = rel_pos_bias_pretrained[:-3, :] | |
new_rel_pos_bias = resize_relative_position_bias_table( | |
src_size, dst_size, rel_pos_bias, nH1) | |
new_rel_pos_bias = torch.cat( | |
(new_rel_pos_bias, extra_tokens), dim=0) | |
logger.info('Resize the relative_position_bias_table from ' | |
f'{state_dict[ckpt_key].shape} to ' | |
f'{new_rel_pos_bias.shape}') | |
state_dict[ckpt_key] = new_rel_pos_bias | |
# The index buffer need to be re-generated. | |
index_buffer = ckpt_key.replace('bias_table', 'index') | |
if index_buffer in state_dict: | |
del state_dict[index_buffer] | |