Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
def split_batch(img, img_metas, kwargs): | |
"""Split data_batch by tags. | |
Code is modified from | |
<https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/structure_utils.py> # noqa: E501 | |
Args: | |
img (Tensor): of shape (N, C, H, W) encoding input images. | |
Typically these should be mean centered and std scaled. | |
img_metas (list[dict]): List of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys, see | |
:class:`mmdet.datasets.pipelines.Collect`. | |
kwargs (dict): Specific to concrete implementation. | |
Returns: | |
data_groups (dict): a dict that data_batch splited by tags, | |
such as 'sup', 'unsup_teacher', and 'unsup_student'. | |
""" | |
# only stack img in the batch | |
def fuse_list(obj_list, obj): | |
return torch.stack(obj_list) if isinstance(obj, | |
torch.Tensor) else obj_list | |
# select data with tag from data_batch | |
def select_group(data_batch, current_tag): | |
group_flag = [tag == current_tag for tag in data_batch['tag']] | |
return { | |
k: fuse_list([vv for vv, gf in zip(v, group_flag) if gf], v) | |
for k, v in data_batch.items() | |
} | |
kwargs.update({'img': img, 'img_metas': img_metas}) | |
kwargs.update({'tag': [meta['tag'] for meta in img_metas]}) | |
tags = list(set(kwargs['tag'])) | |
data_groups = {tag: select_group(kwargs, tag) for tag in tags} | |
for tag, group in data_groups.items(): | |
group.pop('tag') | |
return data_groups | |