KyanChen's picture
init
f549064
raw
history blame
11.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Union
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import BaseBoxes
from mmdet.structures.mask import BitmapMasks, PolygonMasks
from mmdet.utils import ConfigType
from .base import BaseDetector
try:
import detectron2
from detectron2.config import get_cfg
from detectron2.modeling import build_model
from detectron2.structures.masks import BitMasks as D2_BitMasks
from detectron2.structures.masks import PolygonMasks as D2_PolygonMasks
from detectron2.utils.events import EventStorage
except ImportError:
detectron2 = None
def _to_cfgnode_list(cfg: ConfigType,
config_list: list = [],
father_name: str = 'MODEL') -> tuple:
"""Convert the key and value of mmengine.ConfigDict into a list.
Args:
cfg (ConfigDict): The detectron2 model config.
config_list (list): A list contains the key and value of ConfigDict.
Defaults to [].
father_name (str): The father name add before the key.
Defaults to "MODEL".
Returns:
tuple:
- config_list: A list contains the key and value of ConfigDict.
- father_name (str): The father name add before the key.
Defaults to "MODEL".
"""
for key, value in cfg.items():
name = f'{father_name}.{key.upper()}'
if isinstance(value, ConfigDict) or isinstance(value, dict):
config_list, fater_name = \
_to_cfgnode_list(value, config_list, name)
else:
config_list.append(name)
config_list.append(value)
return config_list, father_name
def convert_d2_pred_to_datasample(data_samples: SampleList,
d2_results_list: list) -> SampleList:
"""Convert the Detectron2's result to DetDataSample.
Args:
data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
d2_results_list (list): The list of the results of Detectron2's model.
Returns:
list[:obj:`DetDataSample`]: Detection results of the
input images. Each DetDataSample usually contain
'pred_instances'. And the ``pred_instances`` usually
contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(data_samples) == len(d2_results_list)
for data_sample, d2_results in zip(data_samples, d2_results_list):
d2_instance = d2_results['instances']
results = InstanceData()
results.bboxes = d2_instance.pred_boxes.tensor
results.scores = d2_instance.scores
results.labels = d2_instance.pred_classes
if d2_instance.has('pred_masks'):
results.masks = d2_instance.pred_masks
data_sample.pred_instances = results
return data_samples
@MODELS.register_module()
class Detectron2Wrapper(BaseDetector):
"""Wrapper of a Detectron2 model. Input/output formats of this class follow
MMDetection's convention, so a Detectron2 model can be trained and
evaluated in MMDetection.
Args:
detector (:obj:`ConfigDict` or dict): The module config of
Detectron2.
bgr_to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
rgb_to_bgr (bool): whether to convert image from RGB to BGR.
Defaults to False.
"""
def __init__(self,
detector: ConfigType,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False) -> None:
if detectron2 is None:
raise ImportError('Please install Detectron2 first')
assert not (bgr_to_rgb and rgb_to_bgr), (
'`bgr2rgb` and `rgb2bgr` cannot be set to True at the same time')
super().__init__()
self._channel_conversion = rgb_to_bgr or bgr_to_rgb
cfgnode_list, _ = _to_cfgnode_list(detector)
self.cfg = get_cfg()
self.cfg.merge_from_list(cfgnode_list)
self.d2_model = build_model(self.cfg)
self.storage = EventStorage()
def init_weights(self) -> None:
"""Initialization Backbone.
NOTE: The initialization of other layers are in Detectron2,
if users want to change the initialization way, please
change the code in Detectron2.
"""
from detectron2.checkpoint import DetectionCheckpointer
checkpointer = DetectionCheckpointer(model=self.d2_model)
checkpointer.load(self.cfg.MODEL.WEIGHTS, checkpointables=[])
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> Union[dict, tuple]:
"""Calculate losses from a batch of inputs and data samples.
The inputs will first convert to the Detectron2 type and feed into
D2 models.
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
d2_batched_inputs = self._convert_to_d2_inputs(
batch_inputs=batch_inputs,
batch_data_samples=batch_data_samples,
training=True)
with self.storage as storage: # noqa
losses = self.d2_model(d2_batched_inputs)
# storage contains some training information, such as cls_accuracy.
# you can use storage.latest() to get the detail information
return losses
def predict(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
The inputs will first convert to the Detectron2 type and feed into
D2 models. And the results will convert back to the MMDet type.
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
list[:obj:`DetDataSample`]: Detection results of the
input images. Each DetDataSample usually contain
'pred_instances'. And the ``pred_instances`` usually
contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
d2_batched_inputs = self._convert_to_d2_inputs(
batch_inputs=batch_inputs,
batch_data_samples=batch_data_samples,
training=False)
# results in detectron2 has already rescale
d2_results_list = self.d2_model(d2_batched_inputs)
batch_data_samples = convert_d2_pred_to_datasample(
data_samples=batch_data_samples, d2_results_list=d2_results_list)
return batch_data_samples
def _forward(self, *args, **kwargs):
"""Network forward process.
Usually includes backbone, neck and head forward without any post-
processing.
"""
raise NotImplementedError(
f'`_forward` is not implemented in {self.__class__.__name__}')
def extract_feat(self, *args, **kwargs):
"""Extract features from images.
`extract_feat` will not be used in obj:``Detectron2Wrapper``.
"""
pass
def _convert_to_d2_inputs(self,
batch_inputs: Tensor,
batch_data_samples: SampleList,
training=True) -> list:
"""Convert inputs type to support Detectron2's model.
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
training (bool): Whether to enable training time processing.
Returns:
list[dict]: A list of dict, which will be fed into Detectron2's
model. And the dict usually contains following keys.
- image (Tensor): Image in (C, H, W) format.
- instances (Instances): GT Instance.
- height (int): the output height resolution of the model
- width (int): the output width resolution of the model
"""
from detectron2.data.detection_utils import filter_empty_instances
from detectron2.structures import Boxes, Instances
batched_d2_inputs = []
for image, data_samples in zip(batch_inputs, batch_data_samples):
d2_inputs = dict()
# deal with metainfo
meta_info = data_samples.metainfo
d2_inputs['file_name'] = meta_info['img_path']
d2_inputs['height'], d2_inputs['width'] = meta_info['ori_shape']
d2_inputs['image_id'] = meta_info['img_id']
# deal with image
if self._channel_conversion:
image = image[[2, 1, 0], ...]
d2_inputs['image'] = image
# deal with gt_instances
gt_instances = data_samples.gt_instances
d2_instances = Instances(meta_info['img_shape'])
gt_boxes = gt_instances.bboxes
# TODO: use mmdet.structures.box.get_box_tensor after PR 8658
# has merged
if isinstance(gt_boxes, BaseBoxes):
gt_boxes = gt_boxes.tensor
d2_instances.gt_boxes = Boxes(gt_boxes)
d2_instances.gt_classes = gt_instances.labels
if gt_instances.get('masks', None) is not None:
gt_masks = gt_instances.masks
if isinstance(gt_masks, PolygonMasks):
d2_instances.gt_masks = D2_PolygonMasks(gt_masks.masks)
elif isinstance(gt_masks, BitmapMasks):
d2_instances.gt_masks = D2_BitMasks(gt_masks.masks)
else:
raise TypeError('The type of `gt_mask` can be '
'`PolygonMasks` or `BitMasks`, but get '
f'{type(gt_masks)}.')
# convert to cpu and convert back to cuda to avoid
# some potential error
if training:
device = gt_boxes.device
d2_instances = filter_empty_instances(
d2_instances.to('cpu')).to(device)
d2_inputs['instances'] = d2_instances
batched_d2_inputs.append(d2_inputs)
return batched_d2_inputs