Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, Scale | |
from mmcv.ops import deform_conv2d | |
from mmengine import MessageHub | |
from mmengine.config import ConfigDict | |
from mmengine.model import bias_init_with_prob, normal_init | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.structures.bbox import distance2bbox | |
from mmdet.utils import (ConfigType, InstanceList, OptConfigType, | |
OptInstanceList, reduce_mean) | |
from ..task_modules.prior_generators import anchor_inside_flags | |
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply, | |
sigmoid_geometric_mean, unmap) | |
from .atss_head import ATSSHead | |
class TaskDecomposition(nn.Module): | |
"""Task decomposition module in task-aligned predictor of TOOD. | |
Args: | |
feat_channels (int): Number of feature channels in TOOD head. | |
stacked_convs (int): Number of conv layers in TOOD head. | |
la_down_rate (int): Downsample rate of layer attention. | |
Defaults to 8. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
normalization layer. Defaults to None. | |
""" | |
def __init__(self, | |
feat_channels: int, | |
stacked_convs: int, | |
la_down_rate: int = 8, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: OptConfigType = None) -> None: | |
super().__init__() | |
self.feat_channels = feat_channels | |
self.stacked_convs = stacked_convs | |
self.in_channels = self.feat_channels * self.stacked_convs | |
self.norm_cfg = norm_cfg | |
self.layer_attention = nn.Sequential( | |
nn.Conv2d(self.in_channels, self.in_channels // la_down_rate, 1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d( | |
self.in_channels // la_down_rate, | |
self.stacked_convs, | |
1, | |
padding=0), nn.Sigmoid()) | |
self.reduction_conv = ConvModule( | |
self.in_channels, | |
self.feat_channels, | |
1, | |
stride=1, | |
padding=0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
bias=norm_cfg is None) | |
def init_weights(self) -> None: | |
"""Initialize the parameters.""" | |
for m in self.layer_attention.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001) | |
normal_init(self.reduction_conv.conv, std=0.01) | |
def forward(self, | |
feat: Tensor, | |
avg_feat: Optional[Tensor] = None) -> Tensor: | |
"""Forward function of task decomposition module.""" | |
b, c, h, w = feat.shape | |
if avg_feat is None: | |
avg_feat = F.adaptive_avg_pool2d(feat, (1, 1)) | |
weight = self.layer_attention(avg_feat) | |
# here we first compute the product between layer attention weight and | |
# conv weight, and then compute the convolution between new conv weight | |
# and feature map, in order to save memory and FLOPs. | |
conv_weight = weight.reshape( | |
b, 1, self.stacked_convs, | |
1) * self.reduction_conv.conv.weight.reshape( | |
1, self.feat_channels, self.stacked_convs, self.feat_channels) | |
conv_weight = conv_weight.reshape(b, self.feat_channels, | |
self.in_channels) | |
feat = feat.reshape(b, self.in_channels, h * w) | |
feat = torch.bmm(conv_weight, feat).reshape(b, self.feat_channels, h, | |
w) | |
if self.norm_cfg is not None: | |
feat = self.reduction_conv.norm(feat) | |
feat = self.reduction_conv.activate(feat) | |
return feat | |
class TOODHead(ATSSHead): | |
"""TOODHead used in `TOOD: Task-aligned One-stage Object Detection. | |
<https://arxiv.org/abs/2108.07755>`_. | |
TOOD uses Task-aligned head (T-head) and is optimized by Task Alignment | |
Learning (TAL). | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
num_dcn (int): Number of deformable convolution in the head. | |
Defaults to 0. | |
anchor_type (str): If set to ``anchor_free``, the head will use centers | |
to regress bboxes. If set to ``anchor_based``, the head will | |
regress bboxes based on anchors. Defaults to ``anchor_free``. | |
initial_loss_cls (:obj:`ConfigDict` or dict): Config of initial loss. | |
Example: | |
>>> self = TOODHead(11, 7) | |
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
>>> cls_score, bbox_pred = self.forward(feats) | |
>>> assert len(cls_score) == len(self.scales) | |
""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
num_dcn: int = 0, | |
anchor_type: str = 'anchor_free', | |
initial_loss_cls: ConfigType = dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
activated=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
**kwargs) -> None: | |
assert anchor_type in ['anchor_free', 'anchor_based'] | |
self.num_dcn = num_dcn | |
self.anchor_type = anchor_type | |
super().__init__( | |
num_classes=num_classes, in_channels=in_channels, **kwargs) | |
if self.train_cfg: | |
self.initial_epoch = self.train_cfg['initial_epoch'] | |
self.initial_assigner = TASK_UTILS.build( | |
self.train_cfg['initial_assigner']) | |
self.initial_loss_cls = MODELS.build(initial_loss_cls) | |
self.assigner = self.initial_assigner | |
self.alignment_assigner = TASK_UTILS.build( | |
self.train_cfg['assigner']) | |
self.alpha = self.train_cfg['alpha'] | |
self.beta = self.train_cfg['beta'] | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.inter_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
if i < self.num_dcn: | |
conv_cfg = dict(type='DCNv2', deform_groups=4) | |
else: | |
conv_cfg = self.conv_cfg | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.inter_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.cls_decomp = TaskDecomposition(self.feat_channels, | |
self.stacked_convs, | |
self.stacked_convs * 8, | |
self.conv_cfg, self.norm_cfg) | |
self.reg_decomp = TaskDecomposition(self.feat_channels, | |
self.stacked_convs, | |
self.stacked_convs * 8, | |
self.conv_cfg, self.norm_cfg) | |
self.tood_cls = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
3, | |
padding=1) | |
self.tood_reg = nn.Conv2d( | |
self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
self.cls_prob_module = nn.Sequential( | |
nn.Conv2d(self.feat_channels * self.stacked_convs, | |
self.feat_channels // 4, 1), nn.ReLU(inplace=True), | |
nn.Conv2d(self.feat_channels // 4, 1, 3, padding=1)) | |
self.reg_offset_module = nn.Sequential( | |
nn.Conv2d(self.feat_channels * self.stacked_convs, | |
self.feat_channels // 4, 1), nn.ReLU(inplace=True), | |
nn.Conv2d(self.feat_channels // 4, 4 * 2, 3, padding=1)) | |
self.scales = nn.ModuleList( | |
[Scale(1.0) for _ in self.prior_generator.strides]) | |
def init_weights(self) -> None: | |
"""Initialize weights of the head.""" | |
bias_cls = bias_init_with_prob(0.01) | |
for m in self.inter_convs: | |
normal_init(m.conv, std=0.01) | |
for m in self.cls_prob_module: | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.01) | |
for m in self.reg_offset_module: | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001) | |
normal_init(self.cls_prob_module[-1], std=0.01, bias=bias_cls) | |
self.cls_decomp.init_weights() | |
self.reg_decomp.init_weights() | |
normal_init(self.tood_cls, std=0.01, bias=bias_cls) | |
normal_init(self.tood_reg, std=0.01) | |
def forward(self, feats: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
cls_scores (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_anchors * num_classes. | |
bbox_preds (list[Tensor]): Decoded box for all scale levels, | |
each is a 4D-tensor, the channels number is | |
num_anchors * 4. In [tl_x, tl_y, br_x, br_y] format. | |
""" | |
cls_scores = [] | |
bbox_preds = [] | |
for idx, (x, scale, stride) in enumerate( | |
zip(feats, self.scales, self.prior_generator.strides)): | |
b, c, h, w = x.shape | |
anchor = self.prior_generator.single_level_grid_priors( | |
(h, w), idx, device=x.device) | |
anchor = torch.cat([anchor for _ in range(b)]) | |
# extract task interactive features | |
inter_feats = [] | |
for inter_conv in self.inter_convs: | |
x = inter_conv(x) | |
inter_feats.append(x) | |
feat = torch.cat(inter_feats, 1) | |
# task decomposition | |
avg_feat = F.adaptive_avg_pool2d(feat, (1, 1)) | |
cls_feat = self.cls_decomp(feat, avg_feat) | |
reg_feat = self.reg_decomp(feat, avg_feat) | |
# cls prediction and alignment | |
cls_logits = self.tood_cls(cls_feat) | |
cls_prob = self.cls_prob_module(feat) | |
cls_score = sigmoid_geometric_mean(cls_logits, cls_prob) | |
# reg prediction and alignment | |
if self.anchor_type == 'anchor_free': | |
reg_dist = scale(self.tood_reg(reg_feat).exp()).float() | |
reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4) | |
reg_bbox = distance2bbox( | |
self.anchor_center(anchor) / stride[0], | |
reg_dist).reshape(b, h, w, 4).permute(0, 3, 1, | |
2) # (b, c, h, w) | |
elif self.anchor_type == 'anchor_based': | |
reg_dist = scale(self.tood_reg(reg_feat)).float() | |
reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4) | |
reg_bbox = self.bbox_coder.decode(anchor, reg_dist).reshape( | |
b, h, w, 4).permute(0, 3, 1, 2) / stride[0] | |
else: | |
raise NotImplementedError( | |
f'Unknown anchor type: {self.anchor_type}.' | |
f'Please use `anchor_free` or `anchor_based`.') | |
reg_offset = self.reg_offset_module(feat) | |
bbox_pred = self.deform_sampling(reg_bbox.contiguous(), | |
reg_offset.contiguous()) | |
# After deform_sampling, some boxes will become invalid (The | |
# left-top point is at the right or bottom of the right-bottom | |
# point), which will make the GIoULoss negative. | |
invalid_bbox_idx = (bbox_pred[:, [0]] > bbox_pred[:, [2]]) | \ | |
(bbox_pred[:, [1]] > bbox_pred[:, [3]]) | |
invalid_bbox_idx = invalid_bbox_idx.expand_as(bbox_pred) | |
bbox_pred = torch.where(invalid_bbox_idx, reg_bbox, bbox_pred) | |
cls_scores.append(cls_score) | |
bbox_preds.append(bbox_pred) | |
return tuple(cls_scores), tuple(bbox_preds) | |
def deform_sampling(self, feat: Tensor, offset: Tensor) -> Tensor: | |
"""Sampling the feature x according to offset. | |
Args: | |
feat (Tensor): Feature | |
offset (Tensor): Spatial offset for feature sampling | |
""" | |
# it is an equivalent implementation of bilinear interpolation | |
b, c, h, w = feat.shape | |
weight = feat.new_ones(c, 1, 1, 1) | |
y = deform_conv2d(feat, offset, weight, 1, 0, 1, c, c) | |
return y | |
def anchor_center(self, anchors: Tensor) -> Tensor: | |
"""Get anchor centers from anchors. | |
Args: | |
anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. | |
Returns: | |
Tensor: Anchor centers with shape (N, 2), "xy" format. | |
""" | |
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 | |
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 | |
return torch.stack([anchors_cx, anchors_cy], dim=-1) | |
def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, | |
bbox_pred: Tensor, labels: Tensor, | |
label_weights: Tensor, bbox_targets: Tensor, | |
alignment_metrics: Tensor, | |
stride: Tuple[int, int]) -> dict: | |
"""Calculate the loss of a single scale level based on the features | |
extracted by the detection head. | |
Args: | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_pred (Tensor): Decoded bboxes for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors). | |
bbox_targets (Tensor): BBox regression targets of each anchor with | |
shape (N, num_total_anchors, 4). | |
alignment_metrics (Tensor): Alignment metrics with shape | |
(N, num_total_anchors). | |
stride (Tuple[int, int]): Downsample stride of the feature map. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert stride[0] == stride[1], 'h stride is not equal to w stride!' | |
anchors = anchors.reshape(-1, 4) | |
cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
-1, self.cls_out_channels).contiguous() | |
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
bbox_targets = bbox_targets.reshape(-1, 4) | |
labels = labels.reshape(-1) | |
alignment_metrics = alignment_metrics.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
targets = labels if self.epoch < self.initial_epoch else ( | |
labels, alignment_metrics) | |
cls_loss_func = self.initial_loss_cls \ | |
if self.epoch < self.initial_epoch else self.loss_cls | |
loss_cls = cls_loss_func( | |
cls_score, targets, label_weights, avg_factor=1.0) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = ((labels >= 0) | |
& (labels < bg_class_ind)).nonzero().squeeze(1) | |
if len(pos_inds) > 0: | |
pos_bbox_targets = bbox_targets[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_anchors = anchors[pos_inds] | |
pos_decode_bbox_pred = pos_bbox_pred | |
pos_decode_bbox_targets = pos_bbox_targets / stride[0] | |
# regression loss | |
pos_bbox_weight = self.centerness_target( | |
pos_anchors, pos_bbox_targets | |
) if self.epoch < self.initial_epoch else alignment_metrics[ | |
pos_inds] | |
loss_bbox = self.loss_bbox( | |
pos_decode_bbox_pred, | |
pos_decode_bbox_targets, | |
weight=pos_bbox_weight, | |
avg_factor=1.0) | |
else: | |
loss_bbox = bbox_pred.sum() * 0 | |
pos_bbox_weight = bbox_targets.new_tensor(0.) | |
return loss_cls, loss_bbox, alignment_metrics.sum( | |
), pos_bbox_weight.sum() | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Decoded box for each scale | |
level with shape (N, num_anchors * 4, H, W) in | |
[tl_x, tl_y, br_x, br_y] format. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
num_imgs = len(batch_img_metas) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
flatten_cls_scores = torch.cat([ | |
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.cls_out_channels) | |
for cls_score in cls_scores | |
], 1) | |
flatten_bbox_preds = torch.cat([ | |
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) * stride[0] | |
for bbox_pred, stride in zip(bbox_preds, | |
self.prior_generator.strides) | |
], 1) | |
cls_reg_targets = self.get_targets( | |
flatten_cls_scores, | |
flatten_bbox_preds, | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
alignment_metrics_list) = cls_reg_targets | |
losses_cls, losses_bbox, \ | |
cls_avg_factors, bbox_avg_factors = multi_apply( | |
self.loss_by_feat_single, | |
anchor_list, | |
cls_scores, | |
bbox_preds, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
alignment_metrics_list, | |
self.prior_generator.strides) | |
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() | |
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) | |
bbox_avg_factor = reduce_mean( | |
sum(bbox_avg_factors)).clamp_(min=1).item() | |
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) | |
def _predict_by_feat_single(self, | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
score_factor_list: List[Tensor], | |
mlvl_priors: List[Tensor], | |
img_meta: dict, | |
cfg: Optional[ConfigDict] = None, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceData: | |
"""Transform a single image's features extracted from the head into | |
bbox results. | |
Args: | |
cls_score_list (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
score_factor_list (list[Tensor]): Score factor from all scale | |
levels of a single image, each item has shape | |
(num_priors * 1, H, W). | |
mlvl_priors (list[Tensor]): Each element in the list is | |
the priors of a single level in feature pyramid. In all | |
anchor-based methods, it has shape (num_priors, 4). In | |
all anchor-free methods, it has shape (num_priors, 2) | |
when `with_stride=True`, otherwise it still has shape | |
(num_priors, 4). | |
img_meta (dict): Image meta info. | |
cfg (:obj:`ConfigDict`, optional): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Defaults to True. | |
Returns: | |
tuple[Tensor]: Results of detected bboxes and labels. If with_nms | |
is False and mlvl_score_factor is None, return mlvl_bboxes and | |
mlvl_scores, else return mlvl_bboxes, mlvl_scores and | |
mlvl_score_factor. Usually with_nms is False is used for aug | |
test. If with_nms is True, then return the following format | |
- det_bboxes (Tensor): Predicted bboxes with shape \ | |
[num_bboxes, 5], where the first 4 columns are bounding \ | |
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ | |
column are scores between 0 and 1. | |
- det_labels (Tensor): Predicted labels of the corresponding \ | |
box with shape [num_bboxes]. | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_labels = [] | |
for cls_score, bbox_pred, priors, stride in zip( | |
cls_score_list, bbox_pred_list, mlvl_priors, | |
self.prior_generator.strides): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) * stride[0] | |
scores = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
# After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
# this operation keeps fewer bboxes under the same `nms_pre`. | |
# There is no difference in performance for most models. If you | |
# find a slight drop in performance, you can set a larger | |
# `nms_pre` than before. | |
results = filter_scores_and_topk( | |
scores, cfg.score_thr, nms_pre, | |
dict(bbox_pred=bbox_pred, priors=priors)) | |
scores, labels, keep_idxs, filtered_results = results | |
bboxes = filtered_results['bbox_pred'] | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_labels.append(labels) | |
results = InstanceData() | |
results.bboxes = torch.cat(mlvl_bboxes) | |
results.scores = torch.cat(mlvl_scores) | |
results.labels = torch.cat(mlvl_labels) | |
return self._bbox_post_process( | |
results=results, | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms, | |
img_meta=img_meta) | |
def get_targets(self, | |
cls_scores: List[List[Tensor]], | |
bbox_preds: List[List[Tensor]], | |
anchor_list: List[List[Tensor]], | |
valid_flag_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression and classification targets for anchors in | |
multiple images. | |
Args: | |
cls_scores (list[list[Tensor]]): Classification predictions of | |
images, a 3D-Tensor with shape [num_imgs, num_priors, | |
num_classes]. | |
bbox_preds (list[list[Tensor]]): Decoded bboxes predictions of one | |
image, a 3D-Tensor with shape [num_imgs, num_priors, 4] in | |
[tl_x, tl_y, br_x, br_y] format. | |
anchor_list (list[list[Tensor]]): Multi level anchors of each | |
image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, 4). | |
valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
each image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, ) | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: a tuple containing learning targets. | |
- anchors_list (list[list[Tensor]]): Anchors of each level. | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights_list (list[Tensor]): Label weights of each | |
level. | |
- bbox_targets_list (list[Tensor]): BBox targets of each level. | |
- norm_alignment_metrics_list (list[Tensor]): Normalized | |
alignment metrics of each level. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
num_level_anchors_list = [num_level_anchors] * num_imgs | |
# concat all level anchors and flags to a single tensor | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
anchor_list[i] = torch.cat(anchor_list[i]) | |
valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
# anchor_list: list(b * [-1, 4]) | |
# get epoch information from message hub | |
message_hub = MessageHub.get_current_instance() | |
self.epoch = message_hub.get_info('epoch') | |
if self.epoch < self.initial_epoch: | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_bbox_weights, pos_inds_list, neg_inds_list, | |
sampling_result) = multi_apply( | |
super()._get_targets_single, | |
anchor_list, | |
valid_flag_list, | |
num_level_anchors_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
all_assign_metrics = [ | |
weight[..., 0] for weight in all_bbox_weights | |
] | |
else: | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_assign_metrics) = multi_apply( | |
self._get_targets_single, | |
cls_scores, | |
bbox_preds, | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
# split targets to a list w.r.t. multiple levels | |
anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
labels_list = images_to_levels(all_labels, num_level_anchors) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors) | |
norm_alignment_metrics_list = images_to_levels(all_assign_metrics, | |
num_level_anchors) | |
return (anchors_list, labels_list, label_weights_list, | |
bbox_targets_list, norm_alignment_metrics_list) | |
def _get_targets_single(self, | |
cls_scores: Tensor, | |
bbox_preds: Tensor, | |
flat_anchors: Tensor, | |
valid_flags: Tensor, | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression, classification targets for anchors in a single | |
image. | |
Args: | |
cls_scores (Tensor): Box scores for each image. | |
bbox_preds (Tensor): Box energies / deltas for each image. | |
flat_anchors (Tensor): Multi-level anchors of the image, which are | |
concatenated into a single tensor of shape (num_anchors ,4) | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_anchors,). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: N is the number of total anchors in the image. | |
anchors (Tensor): All anchors in the image with shape (N, 4). | |
labels (Tensor): Labels of all anchors in the image with shape | |
(N,). | |
label_weights (Tensor): Label weights of all anchor in the | |
image with shape (N,). | |
bbox_targets (Tensor): BBox targets of all anchors in the | |
image with shape (N, 4). | |
norm_alignment_metrics (Tensor): Normalized alignment metrics | |
of all priors in the image with shape (N,). | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg['allowed_border']) | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags, :] | |
pred_instances = InstanceData( | |
priors=anchors, | |
scores=cls_scores[inside_flags, :], | |
bboxes=bbox_preds[inside_flags, :]) | |
assign_result = self.alignment_assigner.assign(pred_instances, | |
gt_instances, | |
gt_instances_ignore, | |
self.alpha, self.beta) | |
assign_ious = assign_result.max_overlaps | |
assign_metrics = assign_result.assign_metrics | |
sampling_result = self.sampler.sample(assign_result, pred_instances, | |
gt_instances) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
norm_alignment_metrics = anchors.new_zeros( | |
num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
# point-based | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
labels[pos_inds] = sampling_result.pos_gt_labels | |
if self.train_cfg['pos_weight'] <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
class_assigned_gt_inds = torch.unique( | |
sampling_result.pos_assigned_gt_inds) | |
for gt_inds in class_assigned_gt_inds: | |
gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds == | |
gt_inds] | |
pos_alignment_metrics = assign_metrics[gt_class_inds] | |
pos_ious = assign_ious[gt_class_inds] | |
pos_norm_alignment_metrics = pos_alignment_metrics / ( | |
pos_alignment_metrics.max() + 10e-8) * pos_ious.max() | |
norm_alignment_metrics[gt_class_inds] = pos_norm_alignment_metrics | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
anchors = unmap(anchors, num_total_anchors, inside_flags) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
norm_alignment_metrics = unmap(norm_alignment_metrics, | |
num_total_anchors, inside_flags) | |
return (anchors, labels, label_weights, bbox_targets, | |
norm_alignment_metrics) | |