Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import math | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, is_norm | |
from mmcv.ops import batched_nms | |
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init, | |
normal_init) | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.models.layers.transformer import inverse_sigmoid | |
from mmdet.models.utils import (filter_scores_and_topk, multi_apply, | |
select_single_mlvl, sigmoid_geometric_mean) | |
from mmdet.registry import MODELS | |
from mmdet.structures.bbox import (cat_boxes, distance2bbox, get_box_tensor, | |
get_box_wh, scale_boxes) | |
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean | |
from .rtmdet_head import RTMDetHead | |
class RTMDetInsHead(RTMDetHead): | |
"""Detection Head of RTMDet-Ins. | |
Args: | |
num_prototypes (int): Number of mask prototype features extracted | |
from the mask head. Defaults to 8. | |
dyconv_channels (int): Channel of the dynamic conv layers. | |
Defaults to 8. | |
num_dyconvs (int): Number of the dynamic convolution layers. | |
Defaults to 3. | |
mask_loss_stride (int): Down sample stride of the masks for loss | |
computation. Defaults to 4. | |
loss_mask (:obj:`ConfigDict` or dict): Config dict for mask loss. | |
""" | |
def __init__(self, | |
*args, | |
num_prototypes: int = 8, | |
dyconv_channels: int = 8, | |
num_dyconvs: int = 3, | |
mask_loss_stride: int = 4, | |
loss_mask=dict( | |
type='DiceLoss', | |
loss_weight=2.0, | |
eps=5e-6, | |
reduction='mean'), | |
**kwargs) -> None: | |
self.num_prototypes = num_prototypes | |
self.num_dyconvs = num_dyconvs | |
self.dyconv_channels = dyconv_channels | |
self.mask_loss_stride = mask_loss_stride | |
super().__init__(*args, **kwargs) | |
self.loss_mask = MODELS.build(loss_mask) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
super()._init_layers() | |
# a branch to predict kernels of dynamic convs | |
self.kernel_convs = nn.ModuleList() | |
# calculate num dynamic parameters | |
weight_nums, bias_nums = [], [] | |
for i in range(self.num_dyconvs): | |
if i == 0: | |
weight_nums.append( | |
# mask prototype and coordinate features | |
(self.num_prototypes + 2) * self.dyconv_channels) | |
bias_nums.append(self.dyconv_channels * 1) | |
elif i == self.num_dyconvs - 1: | |
weight_nums.append(self.dyconv_channels * 1) | |
bias_nums.append(1) | |
else: | |
weight_nums.append(self.dyconv_channels * self.dyconv_channels) | |
bias_nums.append(self.dyconv_channels * 1) | |
self.weight_nums = weight_nums | |
self.bias_nums = bias_nums | |
self.num_gen_params = sum(weight_nums) + sum(bias_nums) | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.kernel_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
pred_pad_size = self.pred_kernel_size // 2 | |
self.rtm_kernel = nn.Conv2d( | |
self.feat_channels, | |
self.num_gen_params, | |
self.pred_kernel_size, | |
padding=pred_pad_size) | |
self.mask_head = MaskFeatModule( | |
in_channels=self.in_channels, | |
feat_channels=self.feat_channels, | |
stacked_convs=4, | |
num_levels=len(self.prior_generator.strides), | |
num_prototypes=self.num_prototypes, | |
act_cfg=self.act_cfg, | |
norm_cfg=self.norm_cfg) | |
def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
- cls_scores (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * 4. | |
- kernel_preds (list[Tensor]): Dynamic conv kernels for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_gen_params. | |
- mask_feat (Tensor): Output feature of the mask head. Each is a | |
4D-tensor, the channels number is num_prototypes. | |
""" | |
mask_feat = self.mask_head(feats) | |
cls_scores = [] | |
bbox_preds = [] | |
kernel_preds = [] | |
for idx, (x, scale, stride) in enumerate( | |
zip(feats, self.scales, self.prior_generator.strides)): | |
cls_feat = x | |
reg_feat = x | |
kernel_feat = x | |
for cls_layer in self.cls_convs: | |
cls_feat = cls_layer(cls_feat) | |
cls_score = self.rtm_cls(cls_feat) | |
for kernel_layer in self.kernel_convs: | |
kernel_feat = kernel_layer(kernel_feat) | |
kernel_pred = self.rtm_kernel(kernel_feat) | |
for reg_layer in self.reg_convs: | |
reg_feat = reg_layer(reg_feat) | |
if self.with_objectness: | |
objectness = self.rtm_obj(reg_feat) | |
cls_score = inverse_sigmoid( | |
sigmoid_geometric_mean(cls_score, objectness)) | |
reg_dist = scale(self.rtm_reg(reg_feat)) * stride[0] | |
cls_scores.append(cls_score) | |
bbox_preds.append(reg_dist) | |
kernel_preds.append(kernel_pred) | |
return tuple(cls_scores), tuple(bbox_preds), tuple( | |
kernel_preds), mask_feat | |
def predict_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
kernel_preds: List[Tensor], | |
mask_feat: Tensor, | |
score_factors: Optional[List[Tensor]] = None, | |
batch_img_metas: Optional[List[dict]] = None, | |
cfg: Optional[ConfigType] = None, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceList: | |
"""Transform a batch of output features extracted from the head into | |
bbox results. | |
Note: When score_factors is not None, the cls_scores are | |
usually multiplied by it then obtain the real score used in NMS, | |
such as CenterNess in FCOS, IoU branch in ATSS. | |
Args: | |
cls_scores (list[Tensor]): Classification scores for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * 4, H, W). | |
kernel_preds (list[Tensor]): Kernel predictions of dynamic | |
convs for all scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_params, H, W). | |
mask_feat (Tensor): Mask prototype features extracted from the | |
mask head, has shape (batch_size, num_prototypes, H, W). | |
score_factors (list[Tensor], optional): Score factor for | |
all scale level, each is a 4D-tensor, has shape | |
(batch_size, num_priors * 1, H, W). Defaults to None. | |
batch_img_metas (list[dict], Optional): Batch image meta info. | |
Defaults to None. | |
cfg (ConfigDict, optional): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
Defaults to None. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Defaults to True. | |
Returns: | |
list[:obj:`InstanceData`]: Object detection results of each image | |
after the post process. Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, h, w). | |
""" | |
assert len(cls_scores) == len(bbox_preds) | |
if score_factors is None: | |
# e.g. Retina, FreeAnchor, Foveabox, etc. | |
with_score_factors = False | |
else: | |
# e.g. FCOS, PAA, ATSS, AutoAssign, etc. | |
with_score_factors = True | |
assert len(cls_scores) == len(score_factors) | |
num_levels = len(cls_scores) | |
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] | |
mlvl_priors = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=cls_scores[0].dtype, | |
device=cls_scores[0].device, | |
with_stride=True) | |
result_list = [] | |
for img_id in range(len(batch_img_metas)): | |
img_meta = batch_img_metas[img_id] | |
cls_score_list = select_single_mlvl( | |
cls_scores, img_id, detach=True) | |
bbox_pred_list = select_single_mlvl( | |
bbox_preds, img_id, detach=True) | |
kernel_pred_list = select_single_mlvl( | |
kernel_preds, img_id, detach=True) | |
if with_score_factors: | |
score_factor_list = select_single_mlvl( | |
score_factors, img_id, detach=True) | |
else: | |
score_factor_list = [None for _ in range(num_levels)] | |
results = self._predict_by_feat_single( | |
cls_score_list=cls_score_list, | |
bbox_pred_list=bbox_pred_list, | |
kernel_pred_list=kernel_pred_list, | |
mask_feat=mask_feat[img_id], | |
score_factor_list=score_factor_list, | |
mlvl_priors=mlvl_priors, | |
img_meta=img_meta, | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms) | |
result_list.append(results) | |
return result_list | |
def _predict_by_feat_single(self, | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
kernel_pred_list: List[Tensor], | |
mask_feat: Tensor, | |
score_factor_list: List[Tensor], | |
mlvl_priors: List[Tensor], | |
img_meta: dict, | |
cfg: ConfigType, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceData: | |
"""Transform a single image's features extracted from the head into | |
bbox and mask results. | |
Args: | |
cls_score_list (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
kernel_preds (list[Tensor]): Kernel predictions of dynamic | |
convs for all scale levels of a single image, each is a | |
4D-tensor, has shape (num_params, H, W). | |
mask_feat (Tensor): Mask prototype features of a single image | |
extracted from the mask head, has shape (num_prototypes, H, W). | |
score_factor_list (list[Tensor]): Score factor from all scale | |
levels of a single image, each item has shape | |
(num_priors * 1, H, W). | |
mlvl_priors (list[Tensor]): Each element in the list is | |
the priors of a single level in feature pyramid. In all | |
anchor-based methods, it has shape (num_priors, 4). In | |
all anchor-free methods, it has shape (num_priors, 2) | |
when `with_stride=True`, otherwise it still has shape | |
(num_priors, 4). | |
img_meta (dict): Image meta info. | |
cfg (mmengine.Config): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Defaults to True. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, h, w). | |
""" | |
if score_factor_list[0] is None: | |
# e.g. Retina, FreeAnchor, etc. | |
with_score_factors = False | |
else: | |
# e.g. FCOS, PAA, ATSS, etc. | |
with_score_factors = True | |
cfg = self.test_cfg if cfg is None else cfg | |
cfg = copy.deepcopy(cfg) | |
img_shape = img_meta['img_shape'] | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bbox_preds = [] | |
mlvl_kernels = [] | |
mlvl_valid_priors = [] | |
mlvl_scores = [] | |
mlvl_labels = [] | |
if with_score_factors: | |
mlvl_score_factors = [] | |
else: | |
mlvl_score_factors = None | |
for level_idx, (cls_score, bbox_pred, kernel_pred, | |
score_factor, priors) in \ | |
enumerate(zip(cls_score_list, bbox_pred_list, kernel_pred_list, | |
score_factor_list, mlvl_priors)): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
dim = self.bbox_coder.encode_size | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim) | |
if with_score_factors: | |
score_factor = score_factor.permute(1, 2, | |
0).reshape(-1).sigmoid() | |
cls_score = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
kernel_pred = kernel_pred.permute(1, 2, 0).reshape( | |
-1, self.num_gen_params) | |
if self.use_sigmoid_cls: | |
scores = cls_score.sigmoid() | |
else: | |
# remind that we set FG labels to [0, num_class-1] | |
# since mmdet v2.0 | |
# BG cat_id: num_class | |
scores = cls_score.softmax(-1)[:, :-1] | |
# After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
# this operation keeps fewer bboxes under the same `nms_pre`. | |
# There is no difference in performance for most models. If you | |
# find a slight drop in performance, you can set a larger | |
# `nms_pre` than before. | |
score_thr = cfg.get('score_thr', 0) | |
results = filter_scores_and_topk( | |
scores, score_thr, nms_pre, | |
dict( | |
bbox_pred=bbox_pred, | |
priors=priors, | |
kernel_pred=kernel_pred)) | |
scores, labels, keep_idxs, filtered_results = results | |
bbox_pred = filtered_results['bbox_pred'] | |
priors = filtered_results['priors'] | |
kernel_pred = filtered_results['kernel_pred'] | |
if with_score_factors: | |
score_factor = score_factor[keep_idxs] | |
mlvl_bbox_preds.append(bbox_pred) | |
mlvl_valid_priors.append(priors) | |
mlvl_scores.append(scores) | |
mlvl_labels.append(labels) | |
mlvl_kernels.append(kernel_pred) | |
if with_score_factors: | |
mlvl_score_factors.append(score_factor) | |
bbox_pred = torch.cat(mlvl_bbox_preds) | |
priors = cat_boxes(mlvl_valid_priors) | |
bboxes = self.bbox_coder.decode( | |
priors[..., :2], bbox_pred, max_shape=img_shape) | |
results = InstanceData() | |
results.bboxes = bboxes | |
results.priors = priors | |
results.scores = torch.cat(mlvl_scores) | |
results.labels = torch.cat(mlvl_labels) | |
results.kernels = torch.cat(mlvl_kernels) | |
if with_score_factors: | |
results.score_factors = torch.cat(mlvl_score_factors) | |
return self._bbox_mask_post_process( | |
results=results, | |
mask_feat=mask_feat, | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms, | |
img_meta=img_meta) | |
def _bbox_mask_post_process( | |
self, | |
results: InstanceData, | |
mask_feat, | |
cfg: ConfigType, | |
rescale: bool = False, | |
with_nms: bool = True, | |
img_meta: Optional[dict] = None) -> InstanceData: | |
"""bbox and mask post-processing method. | |
The boxes would be rescaled to the original image scale and do | |
the nms operation. Usually `with_nms` is False is used for aug test. | |
Args: | |
results (:obj:`InstaceData`): Detection instance results, | |
each item has shape (num_bboxes, ). | |
cfg (ConfigDict): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Default to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default to True. | |
img_meta (dict, optional): Image meta info. Defaults to None. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, h, w). | |
""" | |
stride = self.prior_generator.strides[0][0] | |
if rescale: | |
assert img_meta.get('scale_factor') is not None | |
scale_factor = [1 / s for s in img_meta['scale_factor']] | |
results.bboxes = scale_boxes(results.bboxes, scale_factor) | |
if hasattr(results, 'score_factors'): | |
# TODO: Add sqrt operation in order to be consistent with | |
# the paper. | |
score_factors = results.pop('score_factors') | |
results.scores = results.scores * score_factors | |
# filter small size bboxes | |
if cfg.get('min_bbox_size', -1) >= 0: | |
w, h = get_box_wh(results.bboxes) | |
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) | |
if not valid_mask.all(): | |
results = results[valid_mask] | |
# TODO: deal with `with_nms` and `nms_cfg=None` in test_cfg | |
assert with_nms, 'with_nms must be True for RTMDet-Ins' | |
if results.bboxes.numel() > 0: | |
bboxes = get_box_tensor(results.bboxes) | |
det_bboxes, keep_idxs = batched_nms(bboxes, results.scores, | |
results.labels, cfg.nms) | |
results = results[keep_idxs] | |
# some nms would reweight the score, such as softnms | |
results.scores = det_bboxes[:, -1] | |
results = results[:cfg.max_per_img] | |
# process masks | |
mask_logits = self._mask_predict_by_feat_single( | |
mask_feat, results.kernels, results.priors) | |
mask_logits = F.interpolate( | |
mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear') | |
if rescale: | |
ori_h, ori_w = img_meta['ori_shape'][:2] | |
mask_logits = F.interpolate( | |
mask_logits, | |
size=[ | |
math.ceil(mask_logits.shape[-2] * scale_factor[0]), | |
math.ceil(mask_logits.shape[-1] * scale_factor[1]) | |
], | |
mode='bilinear', | |
align_corners=False)[..., :ori_h, :ori_w] | |
masks = mask_logits.sigmoid().squeeze(0) | |
masks = masks > cfg.mask_thr_binary | |
results.masks = masks | |
else: | |
h, w = img_meta['ori_shape'][:2] if rescale else img_meta[ | |
'img_shape'][:2] | |
results.masks = torch.zeros( | |
size=(results.bboxes.shape[0], h, w), | |
dtype=torch.bool, | |
device=results.bboxes.device) | |
return results | |
def parse_dynamic_params(self, flatten_kernels: Tensor) -> tuple: | |
"""split kernel head prediction to conv weight and bias.""" | |
n_inst = flatten_kernels.size(0) | |
n_layers = len(self.weight_nums) | |
params_splits = list( | |
torch.split_with_sizes( | |
flatten_kernels, self.weight_nums + self.bias_nums, dim=1)) | |
weight_splits = params_splits[:n_layers] | |
bias_splits = params_splits[n_layers:] | |
for i in range(n_layers): | |
if i < n_layers - 1: | |
weight_splits[i] = weight_splits[i].reshape( | |
n_inst * self.dyconv_channels, -1, 1, 1) | |
bias_splits[i] = bias_splits[i].reshape(n_inst * | |
self.dyconv_channels) | |
else: | |
weight_splits[i] = weight_splits[i].reshape(n_inst, -1, 1, 1) | |
bias_splits[i] = bias_splits[i].reshape(n_inst) | |
return weight_splits, bias_splits | |
def _mask_predict_by_feat_single(self, mask_feat: Tensor, kernels: Tensor, | |
priors: Tensor) -> Tensor: | |
"""Generate mask logits from mask features with dynamic convs. | |
Args: | |
mask_feat (Tensor): Mask prototype features. | |
Has shape (num_prototypes, H, W). | |
kernels (Tensor): Kernel parameters for each instance. | |
Has shape (num_instance, num_params) | |
priors (Tensor): Center priors for each instance. | |
Has shape (num_instance, 4). | |
Returns: | |
Tensor: Instance segmentation masks for each instance. | |
Has shape (num_instance, H, W). | |
""" | |
num_inst = priors.shape[0] | |
h, w = mask_feat.size()[-2:] | |
if num_inst < 1: | |
return torch.empty( | |
size=(num_inst, h, w), | |
dtype=mask_feat.dtype, | |
device=mask_feat.device) | |
if len(mask_feat.shape) < 4: | |
mask_feat.unsqueeze(0) | |
coord = self.prior_generator.single_level_grid_priors( | |
(h, w), level_idx=0).reshape(1, -1, 2) | |
num_inst = priors.shape[0] | |
points = priors[:, :2].reshape(-1, 1, 2) | |
strides = priors[:, 2:].reshape(-1, 1, 2) | |
relative_coord = (points - coord).permute(0, 2, 1) / ( | |
strides[..., 0].reshape(-1, 1, 1) * 8) | |
relative_coord = relative_coord.reshape(num_inst, 2, h, w) | |
mask_feat = torch.cat( | |
[relative_coord, | |
mask_feat.repeat(num_inst, 1, 1, 1)], dim=1) | |
weights, biases = self.parse_dynamic_params(kernels) | |
n_layers = len(weights) | |
x = mask_feat.reshape(1, -1, h, w) | |
for i, (weight, bias) in enumerate(zip(weights, biases)): | |
x = F.conv2d( | |
x, weight, bias=bias, stride=1, padding=0, groups=num_inst) | |
if i < n_layers - 1: | |
x = F.relu(x) | |
x = x.reshape(num_inst, h, w) | |
return x | |
def loss_mask_by_feat(self, mask_feats: Tensor, flatten_kernels: Tensor, | |
sampling_results_list: list, | |
batch_gt_instances: InstanceList) -> Tensor: | |
"""Compute instance segmentation loss. | |
Args: | |
mask_feats (list[Tensor]): Mask prototype features extracted from | |
the mask head. Has shape (N, num_prototypes, H, W) | |
flatten_kernels (list[Tensor]): Kernels of the dynamic conv layers. | |
Has shape (N, num_instances, num_params) | |
sampling_results_list (list[:obj:`SamplingResults`]) Batch of | |
assignment results. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
Returns: | |
Tensor: The mask loss tensor. | |
""" | |
batch_pos_mask_logits = [] | |
pos_gt_masks = [] | |
for idx, (mask_feat, kernels, sampling_results, | |
gt_instances) in enumerate( | |
zip(mask_feats, flatten_kernels, sampling_results_list, | |
batch_gt_instances)): | |
pos_priors = sampling_results.pos_priors | |
pos_inds = sampling_results.pos_inds | |
pos_kernels = kernels[pos_inds] # n_pos, num_gen_params | |
pos_mask_logits = self._mask_predict_by_feat_single( | |
mask_feat, pos_kernels, pos_priors) | |
if gt_instances.masks.numel() == 0: | |
gt_masks = torch.empty_like(gt_instances.masks) | |
else: | |
gt_masks = gt_instances.masks[ | |
sampling_results.pos_assigned_gt_inds, :] | |
batch_pos_mask_logits.append(pos_mask_logits) | |
pos_gt_masks.append(gt_masks) | |
pos_gt_masks = torch.cat(pos_gt_masks, 0) | |
batch_pos_mask_logits = torch.cat(batch_pos_mask_logits, 0) | |
# avg_factor | |
num_pos = batch_pos_mask_logits.shape[0] | |
num_pos = reduce_mean(mask_feats.new_tensor([num_pos | |
])).clamp_(min=1).item() | |
if batch_pos_mask_logits.shape[0] == 0: | |
return mask_feats.sum() * 0 | |
scale = self.prior_generator.strides[0][0] // self.mask_loss_stride | |
# upsample pred masks | |
batch_pos_mask_logits = F.interpolate( | |
batch_pos_mask_logits.unsqueeze(0), | |
scale_factor=scale, | |
mode='bilinear', | |
align_corners=False).squeeze(0) | |
# downsample gt masks | |
pos_gt_masks = pos_gt_masks[:, self.mask_loss_stride // | |
2::self.mask_loss_stride, | |
self.mask_loss_stride // | |
2::self.mask_loss_stride] | |
loss_mask = self.loss_mask( | |
batch_pos_mask_logits, | |
pos_gt_masks, | |
weight=None, | |
avg_factor=num_pos) | |
return loss_mask | |
def loss_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
kernel_preds: List[Tensor], | |
mask_feat: Tensor, | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Decoded box for each scale | |
level with shape (N, num_anchors * 4, H, W) in | |
[tl_x, tl_y, br_x, br_y] format. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
num_imgs = len(batch_img_metas) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
flatten_cls_scores = torch.cat([ | |
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.cls_out_channels) | |
for cls_score in cls_scores | |
], 1) | |
flatten_kernels = torch.cat([ | |
kernel_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.num_gen_params) | |
for kernel_pred in kernel_preds | |
], 1) | |
decoded_bboxes = [] | |
for anchor, bbox_pred in zip(anchor_list[0], bbox_preds): | |
anchor = anchor.reshape(-1, 4) | |
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
bbox_pred = distance2bbox(anchor, bbox_pred) | |
decoded_bboxes.append(bbox_pred) | |
flatten_bboxes = torch.cat(decoded_bboxes, 1) | |
for gt_instances in batch_gt_instances: | |
gt_instances.masks = gt_instances.masks.to_tensor( | |
dtype=torch.bool, device=device) | |
cls_reg_targets = self.get_targets( | |
flatten_cls_scores, | |
flatten_bboxes, | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
assign_metrics_list, sampling_results_list) = cls_reg_targets | |
losses_cls, losses_bbox,\ | |
cls_avg_factors, bbox_avg_factors = multi_apply( | |
self.loss_by_feat_single, | |
cls_scores, | |
decoded_bboxes, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
assign_metrics_list, | |
self.prior_generator.strides) | |
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() | |
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) | |
bbox_avg_factor = reduce_mean( | |
sum(bbox_avg_factors)).clamp_(min=1).item() | |
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
loss_mask = self.loss_mask_by_feat(mask_feat, flatten_kernels, | |
sampling_results_list, | |
batch_gt_instances) | |
loss = dict( | |
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_mask=loss_mask) | |
return loss | |
class MaskFeatModule(BaseModule): | |
"""Mask feature head used in RTMDet-Ins. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels of the mask feature | |
map branch. | |
num_levels (int): The starting feature map level from RPN that | |
will be used to predict the mask feature map. | |
num_prototypes (int): Number of output channel of the mask feature | |
map branch. This is the channel count of the mask | |
feature map that to be dynamically convolved with the predicted | |
kernel. | |
stacked_convs (int): Number of convs in mask feature branch. | |
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
Default: dict(type='ReLU', inplace=True) | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
feat_channels: int = 256, | |
stacked_convs: int = 4, | |
num_levels: int = 3, | |
num_prototypes: int = 8, | |
act_cfg: ConfigType = dict(type='ReLU', inplace=True), | |
norm_cfg: ConfigType = dict(type='BN') | |
) -> None: | |
super().__init__(init_cfg=None) | |
self.num_levels = num_levels | |
self.fusion_conv = nn.Conv2d(num_levels * in_channels, in_channels, 1) | |
convs = [] | |
for i in range(stacked_convs): | |
in_c = in_channels if i == 0 else feat_channels | |
convs.append( | |
ConvModule( | |
in_c, | |
feat_channels, | |
3, | |
padding=1, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg)) | |
self.stacked_convs = nn.Sequential(*convs) | |
self.projection = nn.Conv2d( | |
feat_channels, num_prototypes, kernel_size=1) | |
def forward(self, features: Tuple[Tensor, ...]) -> Tensor: | |
# multi-level feature fusion | |
fusion_feats = [features[0]] | |
size = features[0].shape[-2:] | |
for i in range(1, self.num_levels): | |
f = F.interpolate(features[i], size=size, mode='bilinear') | |
fusion_feats.append(f) | |
fusion_feats = torch.cat(fusion_feats, dim=1) | |
fusion_feats = self.fusion_conv(fusion_feats) | |
# pred mask feats | |
mask_features = self.stacked_convs(fusion_feats) | |
mask_features = self.projection(mask_features) | |
return mask_features | |
class RTMDetInsSepBNHead(RTMDetInsHead): | |
"""Detection Head of RTMDet-Ins with sep-bn layers. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
share_conv (bool): Whether to share conv layers between stages. | |
Defaults to True. | |
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization | |
layer. Defaults to dict(type='BN'). | |
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1. | |
""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
share_conv: bool = True, | |
with_objectness: bool = False, | |
norm_cfg: ConfigType = dict(type='BN', requires_grad=True), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
pred_kernel_size: int = 1, | |
**kwargs) -> None: | |
self.share_conv = share_conv | |
super().__init__( | |
num_classes, | |
in_channels, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
pred_kernel_size=pred_kernel_size, | |
with_objectness=with_objectness, | |
**kwargs) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
self.kernel_convs = nn.ModuleList() | |
self.rtm_cls = nn.ModuleList() | |
self.rtm_reg = nn.ModuleList() | |
self.rtm_kernel = nn.ModuleList() | |
self.rtm_obj = nn.ModuleList() | |
# calculate num dynamic parameters | |
weight_nums, bias_nums = [], [] | |
for i in range(self.num_dyconvs): | |
if i == 0: | |
weight_nums.append( | |
(self.num_prototypes + 2) * self.dyconv_channels) | |
bias_nums.append(self.dyconv_channels) | |
elif i == self.num_dyconvs - 1: | |
weight_nums.append(self.dyconv_channels) | |
bias_nums.append(1) | |
else: | |
weight_nums.append(self.dyconv_channels * self.dyconv_channels) | |
bias_nums.append(self.dyconv_channels) | |
self.weight_nums = weight_nums | |
self.bias_nums = bias_nums | |
self.num_gen_params = sum(weight_nums) + sum(bias_nums) | |
pred_pad_size = self.pred_kernel_size // 2 | |
for n in range(len(self.prior_generator.strides)): | |
cls_convs = nn.ModuleList() | |
reg_convs = nn.ModuleList() | |
kernel_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
kernel_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
self.cls_convs.append(cls_convs) | |
self.reg_convs.append(cls_convs) | |
self.kernel_convs.append(kernel_convs) | |
self.rtm_cls.append( | |
nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
self.pred_kernel_size, | |
padding=pred_pad_size)) | |
self.rtm_reg.append( | |
nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * 4, | |
self.pred_kernel_size, | |
padding=pred_pad_size)) | |
self.rtm_kernel.append( | |
nn.Conv2d( | |
self.feat_channels, | |
self.num_gen_params, | |
self.pred_kernel_size, | |
padding=pred_pad_size)) | |
if self.with_objectness: | |
self.rtm_obj.append( | |
nn.Conv2d( | |
self.feat_channels, | |
1, | |
self.pred_kernel_size, | |
padding=pred_pad_size)) | |
if self.share_conv: | |
for n in range(len(self.prior_generator.strides)): | |
for i in range(self.stacked_convs): | |
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv | |
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv | |
self.mask_head = MaskFeatModule( | |
in_channels=self.in_channels, | |
feat_channels=self.feat_channels, | |
stacked_convs=4, | |
num_levels=len(self.prior_generator.strides), | |
num_prototypes=self.num_prototypes, | |
act_cfg=self.act_cfg, | |
norm_cfg=self.norm_cfg) | |
def init_weights(self) -> None: | |
"""Initialize weights of the head.""" | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, mean=0, std=0.01) | |
if is_norm(m): | |
constant_init(m, 1) | |
bias_cls = bias_init_with_prob(0.01) | |
for rtm_cls, rtm_reg, rtm_kernel in zip(self.rtm_cls, self.rtm_reg, | |
self.rtm_kernel): | |
normal_init(rtm_cls, std=0.01, bias=bias_cls) | |
normal_init(rtm_reg, std=0.01, bias=1) | |
if self.with_objectness: | |
for rtm_obj in self.rtm_obj: | |
normal_init(rtm_obj, std=0.01, bias=bias_cls) | |
def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
- cls_scores (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * 4. | |
- kernel_preds (list[Tensor]): Dynamic conv kernels for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_gen_params. | |
- mask_feat (Tensor): Output feature of the mask head. Each is a | |
4D-tensor, the channels number is num_prototypes. | |
""" | |
mask_feat = self.mask_head(feats) | |
cls_scores = [] | |
bbox_preds = [] | |
kernel_preds = [] | |
for idx, (x, stride) in enumerate( | |
zip(feats, self.prior_generator.strides)): | |
cls_feat = x | |
reg_feat = x | |
kernel_feat = x | |
for cls_layer in self.cls_convs[idx]: | |
cls_feat = cls_layer(cls_feat) | |
cls_score = self.rtm_cls[idx](cls_feat) | |
for kernel_layer in self.kernel_convs[idx]: | |
kernel_feat = kernel_layer(kernel_feat) | |
kernel_pred = self.rtm_kernel[idx](kernel_feat) | |
for reg_layer in self.reg_convs[idx]: | |
reg_feat = reg_layer(reg_feat) | |
if self.with_objectness: | |
objectness = self.rtm_obj[idx](reg_feat) | |
cls_score = inverse_sigmoid( | |
sigmoid_geometric_mean(cls_score, objectness)) | |
reg_dist = F.relu(self.rtm_reg[idx](reg_feat)) * stride[0] | |
cls_scores.append(cls_score) | |
bbox_preds.append(reg_dist) | |
kernel_preds.append(kernel_pred) | |
return tuple(cls_scores), tuple(bbox_preds), tuple( | |
kernel_preds), mask_feat | |