KyanChen's picture
init
f549064
raw
history blame
41 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..task_modules.prior_generators import MlvlPointGenerator
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
unmap)
from .anchor_free_head import AnchorFreeHead
@MODELS.register_module()
class RepPointsHead(AnchorFreeHead):
"""RepPoint head.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
point_feat_channels (int): Number of channels of points features.
num_points (int): Number of points.
gradient_mul (float): The multiplier to gradients from
points refinement and recognition.
point_strides (Sequence[int]): points strides.
point_base_scale (int): bbox scale for assigning labels.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox_init (:obj:`ConfigDict` or dict): Config of initial points
loss.
loss_bbox_refine (:obj:`ConfigDict` or dict): Config of points loss in
refinement.
use_grid_points (bool): If we use bounding box representation, the
reppoints is represented as grid points on the bounding box.
center_init (bool): Whether to use center point assignment.
transform_method (str): The methods to transform RepPoints to bbox.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict.
""" # noqa: W605
def __init__(self,
num_classes: int,
in_channels: int,
point_feat_channels: int = 256,
num_points: int = 9,
gradient_mul: float = 0.1,
point_strides: Sequence[int] = [8, 16, 32, 64, 128],
point_base_scale: int = 4,
loss_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
loss_bbox_refine: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
use_grid_points: bool = False,
center_init: bool = True,
transform_method: str = 'moment',
moment_mul: float = 0.01,
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='reppoints_cls_out',
std=0.01,
bias_prob=0.01)),
**kwargs) -> None:
self.num_points = num_points
self.point_feat_channels = point_feat_channels
self.use_grid_points = use_grid_points
self.center_init = center_init
# we use deform conv to extract points features
self.dcn_kernel = int(np.sqrt(num_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
assert self.dcn_kernel * self.dcn_kernel == num_points, \
'The points number should be a square number.'
assert self.dcn_kernel % 2 == 1, \
'The points number should be an odd square number.'
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
super().__init__(
num_classes=num_classes,
in_channels=in_channels,
loss_cls=loss_cls,
init_cfg=init_cfg,
**kwargs)
self.gradient_mul = gradient_mul
self.point_base_scale = point_base_scale
self.point_strides = point_strides
self.prior_generator = MlvlPointGenerator(
self.point_strides, offset=0.)
if self.train_cfg:
self.init_assigner = TASK_UTILS.build(
self.train_cfg['init']['assigner'])
self.refine_assigner = TASK_UTILS.build(
self.train_cfg['refine']['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self.transform_method = transform_method
if self.transform_method == 'moment':
self.moment_transfer = nn.Parameter(
data=torch.zeros(2), requires_grad=True)
self.moment_mul = moment_mul
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
if self.use_sigmoid_cls:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
self.loss_bbox_init = MODELS.build(loss_bbox_init)
self.loss_bbox_refine = MODELS.build(loss_bbox_refine)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
self.reppoints_cls_conv = DeformConv2d(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
self.cls_out_channels, 1, 1, 0)
self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
self.point_feat_channels, 3,
1, 1)
self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
self.reppoints_pts_refine_conv = DeformConv2d(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
def points2bbox(self, pts: Tensor, y_first: bool = True) -> Tensor:
"""Converting the points set into bounding box.
Args:
pts (Tensor): the input points sets (fields), each points
set (fields) is represented as 2n scalar.
y_first (bool): if y_first=True, the point set is
represented as [y1, x1, y2, x2 ... yn, xn], otherwise
the point set is represented as
[x1, y1, x2, y2 ... xn, yn]. Defaults to True.
Returns:
Tensor: each points set is converting to a bbox [x1, y1, x2, y2].
"""
pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1,
...]
pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0,
...]
if self.transform_method == 'minmax':
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'partial_minmax':
pts_y = pts_y[:, :4, ...]
pts_x = pts_x[:, :4, ...]
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'moment':
pts_y_mean = pts_y.mean(dim=1, keepdim=True)
pts_x_mean = pts_x.mean(dim=1, keepdim=True)
pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True)
pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True)
moment_transfer = (self.moment_transfer * self.moment_mul) + (
self.moment_transfer.detach() * (1 - self.moment_mul))
moment_width_transfer = moment_transfer[0]
moment_height_transfer = moment_transfer[1]
half_width = pts_x_std * torch.exp(moment_width_transfer)
half_height = pts_y_std * torch.exp(moment_height_transfer)
bbox = torch.cat([
pts_x_mean - half_width, pts_y_mean - half_height,
pts_x_mean + half_width, pts_y_mean + half_height
],
dim=1)
else:
raise NotImplementedError
return bbox
def gen_grid_from_reg(self, reg: Tensor,
previous_boxes: Tensor) -> Tuple[Tensor]:
"""Base on the previous bboxes and regression values, we compute the
regressed bboxes and generate the grids on the bboxes.
Args:
reg (Tensor): the regression value to previous bboxes.
previous_boxes (Tensor): previous bboxes.
Returns:
Tuple[Tensor]: generate grids on the regressed bboxes.
"""
b, _, h, w = reg.shape
bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
bwh = (previous_boxes[:, 2:, ...] -
previous_boxes[:, :2, ...]).clamp(min=1e-6)
grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
reg[:, 2:, ...])
grid_wh = bwh * torch.exp(reg[:, 2:, ...])
grid_left = grid_topleft[:, [0], ...]
grid_top = grid_topleft[:, [1], ...]
grid_width = grid_wh[:, [0], ...]
grid_height = grid_wh[:, [1], ...]
intervel = torch.linspace(0., 1., self.dcn_kernel).view(
1, self.dcn_kernel, 1, 1).type_as(reg)
grid_x = grid_left + grid_width * intervel
grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
grid_x = grid_x.view(b, -1, h, w)
grid_y = grid_top + grid_height * intervel
grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
grid_y = grid_y.view(b, -1, h, w)
grid_yx = torch.stack([grid_y, grid_x], dim=2)
grid_yx = grid_yx.view(b, -1, h, w)
regressed_bbox = torch.cat([
grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
], 1)
return grid_yx, regressed_bbox
def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]:
return multi_apply(self.forward_single, feats)
def forward_single(self, x: Tensor) -> Tuple[Tensor]:
"""Forward feature map of a single FPN level."""
dcn_base_offset = self.dcn_base_offset.type_as(x)
# If we use center_init, the initial reppoints is from center points.
# If we use bounding bbox representation, the initial reppoints is
# from regular grid placed on a pre-defined bbox.
if self.use_grid_points or not self.center_init:
scale = self.point_base_scale / 2
points_init = dcn_base_offset / dcn_base_offset.max() * scale
bbox_init = x.new_tensor([-scale, -scale, scale,
scale]).view(1, 4, 1, 1)
else:
points_init = 0
cls_feat = x
pts_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
pts_feat = reg_conv(pts_feat)
# initialize reppoints
pts_out_init = self.reppoints_pts_init_out(
self.relu(self.reppoints_pts_init_conv(pts_feat)))
if self.use_grid_points:
pts_out_init, bbox_out_init = self.gen_grid_from_reg(
pts_out_init, bbox_init.detach())
else:
pts_out_init = pts_out_init + points_init
# refine and classify reppoints
pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach(
) + self.gradient_mul * pts_out_init
dcn_offset = pts_out_init_grad_mul - dcn_base_offset
cls_out = self.reppoints_cls_out(
self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset)))
pts_out_refine = self.reppoints_pts_refine_out(
self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset)))
if self.use_grid_points:
pts_out_refine, bbox_out_refine = self.gen_grid_from_reg(
pts_out_refine, bbox_out_init.detach())
else:
pts_out_refine = pts_out_refine + pts_out_init.detach()
if self.training:
return cls_out, pts_out_init, pts_out_refine
else:
return cls_out, self.points2bbox(pts_out_refine)
def get_points(self, featmap_sizes: List[Tuple[int]],
batch_img_metas: List[dict], device: str) -> tuple:
"""Get points according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
Returns:
tuple: points of each image, valid flags of each image
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# points center for one time
multi_level_points = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
points_list = [[point.clone() for point in multi_level_points]
for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level grids
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device=device)
valid_flag_list.append(multi_level_flags)
return points_list, valid_flag_list
def centers_to_bboxes(self, point_list: List[Tensor]) -> List[Tensor]:
"""Get bboxes according to center points.
Only used in :class:`MaxIoUAssigner`.
"""
bbox_list = []
for i_img, point in enumerate(point_list):
bbox = []
for i_lvl in range(len(self.point_strides)):
scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
bbox_shift = torch.Tensor([-scale, -scale, scale,
scale]).view(1, 4).type_as(point[0])
bbox_center = torch.cat(
[point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center + bbox_shift)
bbox_list.append(bbox)
return bbox_list
def offset_to_pts(self, center_list: List[Tensor],
pred_list: List[Tensor]) -> List[Tensor]:
"""Change from point offset to point coordinate."""
pts_list = []
for i_lvl in range(len(self.point_strides)):
pts_lvl = []
for i_img in range(len(center_list)):
pts_center = center_list[i_img][i_lvl][:, :2].repeat(
1, self.num_points)
pts_shift = pred_list[i_lvl][i_img]
yx_pts_shift = pts_shift.permute(1, 2, 0).view(
-1, 2 * self.num_points)
y_pts_shift = yx_pts_shift[..., 0::2]
x_pts_shift = yx_pts_shift[..., 1::2]
xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
pts_lvl.append(pts)
pts_lvl = torch.stack(pts_lvl, 0)
pts_list.append(pts_lvl)
return pts_list
def _get_targets_single(self,
flat_proposals: Tensor,
valid_flags: Tensor,
gt_instances: InstanceData,
gt_instances_ignore: InstanceData,
stage: str = 'init',
unmap_outputs: bool = True) -> tuple:
"""Compute corresponding GT box and classification targets for
proposals.
Args:
flat_proposals (Tensor): Multi level points of a image.
valid_flags (Tensor): Multi level valid flags of a image.
gt_instances (InstanceData): It usually includes ``bboxes`` and
``labels`` attributes.
gt_instances_ignore (InstanceData): It includes ``bboxes``
attribute data that is ignored during training and testing.
stage (str): 'init' or 'refine'. Generate target for
init stage or refine stage. Defaults to 'init'.
unmap_outputs (bool): Whether to map outputs back to
the original set of anchors. Defaults to True.
Returns:
tuple:
- labels (Tensor): Labels of each level.
- label_weights (Tensor): Label weights of each level.
- bbox_targets (Tensor): BBox targets of each level.
- bbox_weights (Tensor): BBox weights of each level.
- pos_inds (Tensor): positive samples indexes.
- neg_inds (Tensor): negative samples indexes.
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = valid_flags
if not inside_flags.any():
raise ValueError(
'There is no valid proposal inside the image boundary. Please '
'check the image size.')
# assign gt and sample proposals
proposals = flat_proposals[inside_flags, :]
pred_instances = InstanceData(priors=proposals)
if stage == 'init':
assigner = self.init_assigner
pos_weight = self.train_cfg['init']['pos_weight']
else:
assigner = self.refine_assigner
pos_weight = self.train_cfg['refine']['pos_weight']
assign_result = assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_proposals = proposals.shape[0]
bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
pos_proposals = torch.zeros_like(proposals)
proposals_weights = proposals.new_zeros([num_valid_proposals, 4])
labels = proposals.new_full((num_valid_proposals, ),
self.num_classes,
dtype=torch.long)
label_weights = proposals.new_zeros(
num_valid_proposals, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
bbox_gt[pos_inds, :] = sampling_result.pos_gt_bboxes
pos_proposals[pos_inds, :] = proposals[pos_inds, :]
proposals_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of proposals
if unmap_outputs:
num_total_proposals = flat_proposals.size(0)
labels = unmap(
labels,
num_total_proposals,
inside_flags,
fill=self.num_classes) # fill bg label
label_weights = unmap(label_weights, num_total_proposals,
inside_flags)
bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
pos_proposals = unmap(pos_proposals, num_total_proposals,
inside_flags)
proposals_weights = unmap(proposals_weights, num_total_proposals,
inside_flags)
return (labels, label_weights, bbox_gt, pos_proposals,
proposals_weights, pos_inds, neg_inds, sampling_result)
def get_targets(self,
proposals_list: List[Tensor],
valid_flag_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
stage: str = 'init',
unmap_outputs: bool = True,
return_sampling_results: bool = False) -> tuple:
"""Compute corresponding GT box and classification targets for
proposals.
Args:
proposals_list (list[Tensor]): Multi level points/bboxes of each
image.
valid_flag_list (list[Tensor]): Multi level valid flags of each
image.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
stage (str): 'init' or 'refine'. Generate target for init stage or
refine stage.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
return_sampling_results (bool): Whether to return the sampling
results. Defaults to False.
Returns:
tuple:
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_gt_list (list[Tensor]): Ground truth bbox of each level.
- proposals_list (list[Tensor]): Proposals(points/bboxes) of
each level.
- proposal_weights_list (list[Tensor]): Proposal weights of
each level.
- avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
"""
assert stage in ['init', 'refine']
num_imgs = len(batch_img_metas)
assert len(proposals_list) == len(valid_flag_list) == num_imgs
# points number of multi levels
num_level_proposals = [points.size(0) for points in proposals_list[0]]
# concat all level points and flags to a single tensor
for i in range(num_imgs):
assert len(proposals_list[i]) == len(valid_flag_list[i])
proposals_list[i] = torch.cat(proposals_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
(all_labels, all_label_weights, all_bbox_gt, all_proposals,
all_proposal_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
proposals_list,
valid_flag_list,
batch_gt_instances,
batch_gt_instances_ignore,
stage=stage,
unmap_outputs=unmap_outputs)
# sampled points of all images
avg_refactor = sum(
[results.avg_factor for results in sampling_results_list])
labels_list = images_to_levels(all_labels, num_level_proposals)
label_weights_list = images_to_levels(all_label_weights,
num_level_proposals)
bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals)
proposals_list = images_to_levels(all_proposals, num_level_proposals)
proposal_weights_list = images_to_levels(all_proposal_weights,
num_level_proposals)
res = (labels_list, label_weights_list, bbox_gt_list, proposals_list,
proposal_weights_list, avg_refactor)
if return_sampling_results:
res = res + (sampling_results_list, )
return res
def loss_by_feat_single(self, cls_score: Tensor, pts_pred_init: Tensor,
pts_pred_refine: Tensor, labels: Tensor,
label_weights, bbox_gt_init: Tensor,
bbox_weights_init: Tensor, bbox_gt_refine: Tensor,
bbox_weights_refine: Tensor, stride: int,
avg_factor_init: int,
avg_factor_refine: int) -> Tuple[Tensor]:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_classes, h_i, w_i).
pts_pred_init (Tensor): Points of shape
(batch_size, h_i * w_i, num_points * 2).
pts_pred_refine (Tensor): Points refined of shape
(batch_size, h_i * w_i, num_points * 2).
labels (Tensor): Ground truth class indices with shape
(batch_size, h_i * w_i).
label_weights (Tensor): Label weights of shape
(batch_size, h_i * w_i).
bbox_gt_init (Tensor): BBox regression targets in the init stage
of shape (batch_size, h_i * w_i, 4).
bbox_weights_init (Tensor): BBox regression loss weights in the
init stage of shape (batch_size, h_i * w_i, 4).
bbox_gt_refine (Tensor): BBox regression targets in the refine
stage of shape (batch_size, h_i * w_i, 4).
bbox_weights_refine (Tensor): BBox regression loss weights in the
refine stage of shape (batch_size, h_i * w_i, 4).
stride (int): Point stride.
avg_factor_init (int): Average factor that is used to average
the loss in the init stage.
avg_factor_refine (int): Average factor that is used to average
the loss in the refine stage.
Returns:
Tuple[Tensor]: loss components.
"""
# classification loss
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
cls_score = cls_score.contiguous()
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor_refine)
# points loss
bbox_gt_init = bbox_gt_init.reshape(-1, 4)
bbox_weights_init = bbox_weights_init.reshape(-1, 4)
bbox_pred_init = self.points2bbox(
pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False)
bbox_gt_refine = bbox_gt_refine.reshape(-1, 4)
bbox_weights_refine = bbox_weights_refine.reshape(-1, 4)
bbox_pred_refine = self.points2bbox(
pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False)
normalize_term = self.point_base_scale * stride
loss_pts_init = self.loss_bbox_init(
bbox_pred_init / normalize_term,
bbox_gt_init / normalize_term,
bbox_weights_init,
avg_factor=avg_factor_init)
loss_pts_refine = self.loss_bbox_refine(
bbox_pred_refine / normalize_term,
bbox_gt_refine / normalize_term,
bbox_weights_refine,
avg_factor=avg_factor_refine)
return loss_cls, loss_pts_init, loss_pts_refine
def loss_by_feat(
self,
cls_scores: List[Tensor],
pts_preds_init: List[Tensor],
pts_preds_refine: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level,
each is a 4D-tensor, of shape (batch_size, num_classes, h, w).
pts_preds_init (list[Tensor]): Points for each scale level, each is
a 3D-tensor, of shape (batch_size, h_i * w_i, num_points * 2).
pts_preds_refine (list[Tensor]): Points refined for each scale
level, each is a 3D-tensor, of shape
(batch_size, h_i * w_i, num_points * 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
device = cls_scores[0].device
# target for initial stage
center_list, valid_flag_list = self.get_points(featmap_sizes,
batch_img_metas, device)
pts_coordinate_preds_init = self.offset_to_pts(center_list,
pts_preds_init)
if self.train_cfg['init']['assigner']['type'] == 'PointAssigner':
# Assign target for center list
candidate_list = center_list
else:
# transform center list to bbox list and
# assign target for bbox list
bbox_list = self.centers_to_bboxes(center_list)
candidate_list = bbox_list
cls_reg_targets_init = self.get_targets(
proposals_list=candidate_list,
valid_flag_list=valid_flag_list,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
stage='init',
return_sampling_results=False)
(*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init,
avg_factor_init) = cls_reg_targets_init
# target for refinement stage
center_list, valid_flag_list = self.get_points(featmap_sizes,
batch_img_metas, device)
pts_coordinate_preds_refine = self.offset_to_pts(
center_list, pts_preds_refine)
bbox_list = []
for i_img, center in enumerate(center_list):
bbox = []
for i_lvl in range(len(pts_preds_refine)):
bbox_preds_init = self.points2bbox(
pts_preds_init[i_lvl].detach())
bbox_shift = bbox_preds_init * self.point_strides[i_lvl]
bbox_center = torch.cat(
[center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center +
bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4))
bbox_list.append(bbox)
cls_reg_targets_refine = self.get_targets(
proposals_list=bbox_list,
valid_flag_list=valid_flag_list,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
stage='refine',
return_sampling_results=False)
(labels_list, label_weights_list, bbox_gt_list_refine,
candidate_list_refine, bbox_weights_list_refine,
avg_factor_refine) = cls_reg_targets_refine
# compute loss
losses_cls, losses_pts_init, losses_pts_refine = multi_apply(
self.loss_by_feat_single,
cls_scores,
pts_coordinate_preds_init,
pts_coordinate_preds_refine,
labels_list,
label_weights_list,
bbox_gt_list_init,
bbox_weights_list_init,
bbox_gt_list_refine,
bbox_weights_list_refine,
self.point_strides,
avg_factor_init=avg_factor_init,
avg_factor_refine=avg_factor_refine)
loss_dict_all = {
'loss_cls': losses_cls,
'loss_pts_init': losses_pts_init,
'loss_pts_refine': losses_pts_refine
}
return loss_dict_all
# Same as base_dense_head/_get_bboxes_single except self._bbox_decode
def _predict_by_feat_single(self,
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
score_factor_list: List[Tensor],
mlvl_priors: List[Tensor],
img_meta: dict,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
"""Transform outputs of a single image into bbox predictions.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image. RepPoints head does not need
this value.
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid, has shape
(num_priors, 2).
img_meta (dict): Image meta info.
cfg (:obj:`ConfigDict`): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_score_list) == len(bbox_pred_list)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_labels = []
for level_idx, (cls_score, bbox_pred, priors) in enumerate(
zip(cls_score_list, bbox_pred_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, _, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
bboxes = self._bbox_decode(priors, bbox_pred,
self.point_strides[level_idx],
img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
results = InstanceData()
results.bboxes = torch.cat(mlvl_bboxes)
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
return self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
def _bbox_decode(self, points: Tensor, bbox_pred: Tensor, stride: int,
max_shape: Tuple[int, int]) -> Tensor:
"""Decode the prediction to bounding box.
Args:
points (Tensor): shape (h_i * w_i, 2).
bbox_pred (Tensor): shape (h_i * w_i, 4).
stride (int): Stride for bbox_pred in different level.
max_shape (Tuple[int, int]): image shape.
Returns:
Tensor: Bounding boxes decoded.
"""
bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1)
bboxes = bbox_pred * stride + bbox_pos_center
x1 = bboxes[:, 0].clamp(min=0, max=max_shape[1])
y1 = bboxes[:, 1].clamp(min=0, max=max_shape[0])
x2 = bboxes[:, 2].clamp(min=0, max=max_shape[1])
y2 = bboxes[:, 3].clamp(min=0, max=max_shape[0])
decoded_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return decoded_bboxes