Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.ops import DeformConv2d, MaskedConv2d | |
from mmengine.model import BaseModule | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
OptInstanceList) | |
from ..layers import multiclass_nms | |
from ..task_modules.prior_generators import anchor_inside_flags, calc_region | |
from ..task_modules.samplers import PseudoSampler | |
from ..utils import images_to_levels, multi_apply, unmap | |
from .anchor_head import AnchorHead | |
class FeatureAdaption(BaseModule): | |
"""Feature Adaption Module. | |
Feature Adaption Module is implemented based on DCN v1. | |
It uses anchor shape prediction rather than feature map to | |
predict offsets of deform conv layer. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
out_channels (int): Number of channels in the output feature map. | |
kernel_size (int): Deformable conv kernel size. Defaults to 3. | |
deform_groups (int): Deformable conv group size. Defaults to 4. | |
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ | |
list[dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
deform_groups: int = 4, | |
init_cfg: MultiConfig = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.1, | |
override=dict(type='Normal', name='conv_adaption', std=0.01)) | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
offset_channels = kernel_size * kernel_size * 2 | |
self.conv_offset = nn.Conv2d( | |
2, deform_groups * offset_channels, 1, bias=False) | |
self.conv_adaption = DeformConv2d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
padding=(kernel_size - 1) // 2, | |
deform_groups=deform_groups) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x: Tensor, shape: Tensor) -> Tensor: | |
offset = self.conv_offset(shape.detach()) | |
x = self.relu(self.conv_adaption(x, offset)) | |
return x | |
class GuidedAnchorHead(AnchorHead): | |
"""Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.). | |
This GuidedAnchorHead will predict high-quality feature guided | |
anchors and locations where anchors will be kept in inference. | |
There are mainly 3 categories of bounding-boxes. | |
- Sampled 9 pairs for target assignment. (approxes) | |
- The square boxes where the predicted anchors are based on. (squares) | |
- Guided anchors. | |
Please refer to https://arxiv.org/abs/1901.03278 for more details. | |
Args: | |
num_classes (int): Number of classes. | |
in_channels (int): Number of channels in the input feature map. | |
feat_channels (int): Number of hidden channels. Defaults to 256. | |
approx_anchor_generator (:obj:`ConfigDict` or dict): Config dict | |
for approx generator | |
square_anchor_generator (:obj:`ConfigDict` or dict): Config dict | |
for square generator | |
anchor_coder (:obj:`ConfigDict` or dict): Config dict for anchor coder | |
bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Defaults to False. It should be `True` when | |
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
deform_groups: (int): Group number of DCN in FeatureAdaption module. | |
Defaults to 4. | |
loc_filter_thr (float): Threshold to filter out unconcerned regions. | |
Defaults to 0.01. | |
loss_loc (:obj:`ConfigDict` or dict): Config of location loss. | |
loss_shape (:obj:`ConfigDict` or dict): Config of anchor shape loss. | |
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. | |
loss_bbox (:obj:`ConfigDict` or dict): Config of bbox regression loss. | |
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ | |
list[dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
num_classes: int, | |
in_channels: int, | |
feat_channels: int = 256, | |
approx_anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
octave_base_scale=8, | |
scales_per_octave=3, | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64]), | |
square_anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
ratios=[1.0], | |
scales=[8], | |
strides=[4, 8, 16, 32, 64]), | |
anchor_coder: ConfigType = dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[.0, .0, .0, .0], | |
target_stds=[1.0, 1.0, 1.0, 1.0]), | |
bbox_coder: ConfigType = dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[.0, .0, .0, .0], | |
target_stds=[1.0, 1.0, 1.0, 1.0]), | |
reg_decoded_bbox: bool = False, | |
deform_groups: int = 4, | |
loc_filter_thr: float = 0.01, | |
train_cfg: OptConfigType = None, | |
test_cfg: OptConfigType = None, | |
loss_loc: ConfigType = dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_shape: ConfigType = dict( | |
type='BoundedIoULoss', beta=0.2, loss_weight=1.0), | |
loss_cls: ConfigType = dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
loss_bbox: ConfigType = dict( | |
type='SmoothL1Loss', beta=1.0, loss_weight=1.0), | |
init_cfg: MultiConfig = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', name='conv_loc', std=0.01, lbias_prob=0.01)) | |
) -> None: | |
super(AnchorHead, self).__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.feat_channels = feat_channels | |
self.deform_groups = deform_groups | |
self.loc_filter_thr = loc_filter_thr | |
# build approx_anchor_generator and square_anchor_generator | |
assert (approx_anchor_generator['octave_base_scale'] == | |
square_anchor_generator['scales'][0]) | |
assert (approx_anchor_generator['strides'] == | |
square_anchor_generator['strides']) | |
self.approx_anchor_generator = TASK_UTILS.build( | |
approx_anchor_generator) | |
self.square_anchor_generator = TASK_UTILS.build( | |
square_anchor_generator) | |
self.approxs_per_octave = self.approx_anchor_generator \ | |
.num_base_priors[0] | |
self.reg_decoded_bbox = reg_decoded_bbox | |
# one anchor per location | |
self.num_base_priors = self.square_anchor_generator.num_base_priors[0] | |
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
self.loc_focal_loss = loss_loc['type'] in ['FocalLoss'] | |
if self.use_sigmoid_cls: | |
self.cls_out_channels = self.num_classes | |
else: | |
self.cls_out_channels = self.num_classes + 1 | |
# build bbox_coder | |
self.anchor_coder = TASK_UTILS.build(anchor_coder) | |
self.bbox_coder = TASK_UTILS.build(bbox_coder) | |
# build losses | |
self.loss_loc = MODELS.build(loss_loc) | |
self.loss_shape = MODELS.build(loss_shape) | |
self.loss_cls = MODELS.build(loss_cls) | |
self.loss_bbox = MODELS.build(loss_bbox) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
if self.train_cfg: | |
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
# use PseudoSampler when no sampler in train_cfg | |
if train_cfg.get('sampler', None) is not None: | |
self.sampler = TASK_UTILS.build( | |
self.train_cfg['sampler'], default_args=dict(context=self)) | |
else: | |
self.sampler = PseudoSampler() | |
self.ga_assigner = TASK_UTILS.build(self.train_cfg['ga_assigner']) | |
if train_cfg.get('ga_sampler', None) is not None: | |
self.ga_sampler = TASK_UTILS.build( | |
self.train_cfg['ga_sampler'], | |
default_args=dict(context=self)) | |
else: | |
self.ga_sampler = PseudoSampler() | |
self._init_layers() | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.conv_loc = nn.Conv2d(self.in_channels, 1, 1) | |
self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2, | |
1) | |
self.feature_adaption = FeatureAdaption( | |
self.in_channels, | |
self.feat_channels, | |
kernel_size=3, | |
deform_groups=self.deform_groups) | |
self.conv_cls = MaskedConv2d( | |
self.feat_channels, self.num_base_priors * self.cls_out_channels, | |
1) | |
self.conv_reg = MaskedConv2d(self.feat_channels, | |
self.num_base_priors * 4, 1) | |
def forward_single(self, x: Tensor) -> Tuple[Tensor]: | |
"""Forward feature of a single scale level.""" | |
loc_pred = self.conv_loc(x) | |
shape_pred = self.conv_shape(x) | |
x = self.feature_adaption(x, shape_pred) | |
# masked conv is only used during inference for speed-up | |
if not self.training: | |
mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr | |
else: | |
mask = None | |
cls_score = self.conv_cls(x, mask) | |
bbox_pred = self.conv_reg(x, mask) | |
return cls_score, bbox_pred, shape_pred, loc_pred | |
def forward(self, x: List[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network.""" | |
return multi_apply(self.forward_single, x) | |
def get_sampled_approxs(self, | |
featmap_sizes: List[Tuple[int, int]], | |
batch_img_metas: List[dict], | |
device: str = 'cuda') -> tuple: | |
"""Get sampled approxs and inside flags according to feature map sizes. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
batch_img_metas (list[dict]): Image meta info. | |
device (str): device for returned tensors | |
Returns: | |
tuple: approxes of each image, inside flags of each image | |
""" | |
num_imgs = len(batch_img_metas) | |
# since feature map sizes of all images are the same, we only compute | |
# approxes for one time | |
multi_level_approxs = self.approx_anchor_generator.grid_priors( | |
featmap_sizes, device=device) | |
approxs_list = [multi_level_approxs for _ in range(num_imgs)] | |
# for each image, we compute inside flags of multi level approxes | |
inside_flag_list = [] | |
for img_id, img_meta in enumerate(batch_img_metas): | |
multi_level_flags = [] | |
multi_level_approxs = approxs_list[img_id] | |
# obtain valid flags for each approx first | |
multi_level_approx_flags = self.approx_anchor_generator \ | |
.valid_flags(featmap_sizes, | |
img_meta['pad_shape'], | |
device=device) | |
for i, flags in enumerate(multi_level_approx_flags): | |
approxs = multi_level_approxs[i] | |
inside_flags_list = [] | |
for j in range(self.approxs_per_octave): | |
split_valid_flags = flags[j::self.approxs_per_octave] | |
split_approxs = approxs[j::self.approxs_per_octave, :] | |
inside_flags = anchor_inside_flags( | |
split_approxs, split_valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg['allowed_border']) | |
inside_flags_list.append(inside_flags) | |
# inside_flag for a position is true if any anchor in this | |
# position is true | |
inside_flags = ( | |
torch.stack(inside_flags_list, 0).sum(dim=0) > 0) | |
multi_level_flags.append(inside_flags) | |
inside_flag_list.append(multi_level_flags) | |
return approxs_list, inside_flag_list | |
def get_anchors(self, | |
featmap_sizes: List[Tuple[int, int]], | |
shape_preds: List[Tensor], | |
loc_preds: List[Tensor], | |
batch_img_metas: List[dict], | |
use_loc_filter: bool = False, | |
device: str = 'cuda') -> tuple: | |
"""Get squares according to feature map sizes and guided anchors. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
shape_preds (list[tensor]): Multi-level shape predictions. | |
loc_preds (list[tensor]): Multi-level location predictions. | |
batch_img_metas (list[dict]): Image meta info. | |
use_loc_filter (bool): Use loc filter or not. Defaults to False | |
device (str): device for returned tensors. | |
Defaults to `cuda`. | |
Returns: | |
tuple: square approxs of each image, guided anchors of each image, | |
loc masks of each image. | |
""" | |
num_imgs = len(batch_img_metas) | |
num_levels = len(featmap_sizes) | |
# since feature map sizes of all images are the same, we only compute | |
# squares for one time | |
multi_level_squares = self.square_anchor_generator.grid_priors( | |
featmap_sizes, device=device) | |
squares_list = [multi_level_squares for _ in range(num_imgs)] | |
# for each image, we compute multi level guided anchors | |
guided_anchors_list = [] | |
loc_mask_list = [] | |
for img_id, img_meta in enumerate(batch_img_metas): | |
multi_level_guided_anchors = [] | |
multi_level_loc_mask = [] | |
for i in range(num_levels): | |
squares = squares_list[img_id][i] | |
shape_pred = shape_preds[i][img_id] | |
loc_pred = loc_preds[i][img_id] | |
guided_anchors, loc_mask = self._get_guided_anchors_single( | |
squares, | |
shape_pred, | |
loc_pred, | |
use_loc_filter=use_loc_filter) | |
multi_level_guided_anchors.append(guided_anchors) | |
multi_level_loc_mask.append(loc_mask) | |
guided_anchors_list.append(multi_level_guided_anchors) | |
loc_mask_list.append(multi_level_loc_mask) | |
return squares_list, guided_anchors_list, loc_mask_list | |
def _get_guided_anchors_single( | |
self, | |
squares: Tensor, | |
shape_pred: Tensor, | |
loc_pred: Tensor, | |
use_loc_filter: bool = False) -> Tuple[Tensor]: | |
"""Get guided anchors and loc masks for a single level. | |
Args: | |
squares (tensor): Squares of a single level. | |
shape_pred (tensor): Shape predictions of a single level. | |
loc_pred (tensor): Loc predictions of a single level. | |
use_loc_filter (list[tensor]): Use loc filter or not. | |
Defaults to False. | |
Returns: | |
tuple: guided anchors, location masks | |
""" | |
# calculate location filtering mask | |
loc_pred = loc_pred.sigmoid().detach() | |
if use_loc_filter: | |
loc_mask = loc_pred >= self.loc_filter_thr | |
else: | |
loc_mask = loc_pred >= 0.0 | |
mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors) | |
mask = mask.contiguous().view(-1) | |
# calculate guided anchors | |
squares = squares[mask] | |
anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view( | |
-1, 2).detach()[mask] | |
bbox_deltas = anchor_deltas.new_full(squares.size(), 0) | |
bbox_deltas[:, 2:] = anchor_deltas | |
guided_anchors = self.anchor_coder.decode( | |
squares, bbox_deltas, wh_ratio_clip=1e-6) | |
return guided_anchors, mask | |
def ga_loc_targets(self, batch_gt_instances: InstanceList, | |
featmap_sizes: List[Tuple[int, int]]) -> tuple: | |
"""Compute location targets for guided anchoring. | |
Each feature map is divided into positive, negative and ignore regions. | |
- positive regions: target 1, weight 1 | |
- ignore regions: target 0, weight 0 | |
- negative regions: target 0, weight 0.1 | |
Args: | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
featmap_sizes (list[tuple]): Multi level sizes of each feature | |
maps. | |
Returns: | |
tuple: Returns a tuple containing location targets. | |
""" | |
anchor_scale = self.approx_anchor_generator.octave_base_scale | |
anchor_strides = self.approx_anchor_generator.strides | |
# Currently only supports same stride in x and y direction. | |
for stride in anchor_strides: | |
assert (stride[0] == stride[1]) | |
anchor_strides = [stride[0] for stride in anchor_strides] | |
center_ratio = self.train_cfg['center_ratio'] | |
ignore_ratio = self.train_cfg['ignore_ratio'] | |
img_per_gpu = len(batch_gt_instances) | |
num_lvls = len(featmap_sizes) | |
r1 = (1 - center_ratio) / 2 | |
r2 = (1 - ignore_ratio) / 2 | |
all_loc_targets = [] | |
all_loc_weights = [] | |
all_ignore_map = [] | |
for lvl_id in range(num_lvls): | |
h, w = featmap_sizes[lvl_id] | |
loc_targets = torch.zeros( | |
img_per_gpu, | |
1, | |
h, | |
w, | |
device=batch_gt_instances[0].bboxes.device, | |
dtype=torch.float32) | |
loc_weights = torch.full_like(loc_targets, -1) | |
ignore_map = torch.zeros_like(loc_targets) | |
all_loc_targets.append(loc_targets) | |
all_loc_weights.append(loc_weights) | |
all_ignore_map.append(ignore_map) | |
for img_id in range(img_per_gpu): | |
gt_bboxes = batch_gt_instances[img_id].bboxes | |
scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * | |
(gt_bboxes[:, 3] - gt_bboxes[:, 1])) | |
min_anchor_size = scale.new_full( | |
(1, ), float(anchor_scale * anchor_strides[0])) | |
# assign gt bboxes to different feature levels w.r.t. their scales | |
target_lvls = torch.floor( | |
torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) | |
target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() | |
for gt_id in range(gt_bboxes.size(0)): | |
lvl = target_lvls[gt_id].item() | |
# rescaled to corresponding feature map | |
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl] | |
# calculate ignore regions | |
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
gt_, r2, featmap_sizes[lvl]) | |
# calculate positive (center) regions | |
ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region( | |
gt_, r1, featmap_sizes[lvl]) | |
all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, | |
ctr_x1:ctr_x2 + 1] = 1 | |
all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
ignore_x1:ignore_x2 + 1] = 0 | |
all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, | |
ctr_x1:ctr_x2 + 1] = 1 | |
# calculate ignore map on nearby low level feature | |
if lvl > 0: | |
d_lvl = lvl - 1 | |
# rescaled to corresponding feature map | |
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl] | |
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
gt_, r2, featmap_sizes[d_lvl]) | |
all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
ignore_x1:ignore_x2 + 1] = 1 | |
# calculate ignore map on nearby high level feature | |
if lvl < num_lvls - 1: | |
u_lvl = lvl + 1 | |
# rescaled to corresponding feature map | |
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl] | |
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
gt_, r2, featmap_sizes[u_lvl]) | |
all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
ignore_x1:ignore_x2 + 1] = 1 | |
for lvl_id in range(num_lvls): | |
# ignore negative regions w.r.t. ignore map | |
all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0) | |
& (all_ignore_map[lvl_id] > 0)] = 0 | |
# set negative regions with weight 0.1 | |
all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1 | |
# loc average factor to balance loss | |
loc_avg_factor = sum( | |
[t.size(0) * t.size(-1) * t.size(-2) | |
for t in all_loc_targets]) / 200 | |
return all_loc_targets, all_loc_weights, loc_avg_factor | |
def _ga_shape_target_single(self, | |
flat_approxs: Tensor, | |
inside_flags: Tensor, | |
flat_squares: Tensor, | |
gt_instances: InstanceData, | |
gt_instances_ignore: Optional[InstanceData], | |
img_meta: dict, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute guided anchoring targets. | |
This function returns sampled anchors and gt bboxes directly | |
rather than calculates regression targets. | |
Args: | |
flat_approxs (Tensor): flat approxs of a single image, | |
shape (n, 4) | |
inside_flags (Tensor): inside flags of a single image, | |
shape (n, ). | |
flat_squares (Tensor): flat squares of a single image, | |
shape (approxs_per_octave * n, 4) | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
img_meta (dict): Meta info of a single image. | |
unmap_outputs (bool): unmap outputs or not. | |
Returns: | |
tuple: Returns a tuple containing shape targets of each image. | |
""" | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
num_square = flat_squares.size(0) | |
approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4) | |
approxs = approxs[inside_flags, ...] | |
squares = flat_squares[inside_flags, :] | |
pred_instances = InstanceData() | |
pred_instances.priors = squares | |
pred_instances.approxs = approxs | |
assign_result = self.ga_assigner.assign( | |
pred_instances=pred_instances, | |
gt_instances=gt_instances, | |
gt_instances_ignore=gt_instances_ignore) | |
sampling_result = self.ga_sampler.sample( | |
assign_result=assign_result, | |
pred_instances=pred_instances, | |
gt_instances=gt_instances) | |
bbox_anchors = torch.zeros_like(squares) | |
bbox_gts = torch.zeros_like(squares) | |
bbox_weights = torch.zeros_like(squares) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes | |
bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes | |
bbox_weights[pos_inds, :] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_squares.size(0) | |
bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags) | |
bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds, | |
sampling_result) | |
def ga_shape_targets(self, | |
approx_list: List[List[Tensor]], | |
inside_flag_list: List[List[Tensor]], | |
square_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute guided anchoring targets. | |
Args: | |
approx_list (list[list[Tensor]]): Multi level approxs of each | |
image. | |
inside_flag_list (list[list[Tensor]]): Multi level inside flags | |
of each image. | |
square_list (list[list[Tensor]]): Multi level squares of each | |
image. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): unmap outputs or not. Defaults to None. | |
Returns: | |
tuple: Returns a tuple containing shape targets. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(approx_list) == len(inside_flag_list) == len( | |
square_list) == num_imgs | |
# anchor number of multi levels | |
num_level_squares = [squares.size(0) for squares in square_list[0]] | |
# concat all level anchors and flags to a single tensor | |
inside_flag_flat_list = [] | |
approx_flat_list = [] | |
square_flat_list = [] | |
for i in range(num_imgs): | |
assert len(square_list[i]) == len(inside_flag_list[i]) | |
inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) | |
approx_flat_list.append(torch.cat(approx_list[i])) | |
square_flat_list.append(torch.cat(square_list[i])) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None for _ in range(num_imgs)] | |
(all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list, | |
neg_inds_list, sampling_results_list) = multi_apply( | |
self._ga_shape_target_single, | |
approx_flat_list, | |
inside_flag_flat_list, | |
square_flat_list, | |
batch_gt_instances, | |
batch_gt_instances_ignore, | |
batch_img_metas, | |
unmap_outputs=unmap_outputs) | |
# sampled anchors of all images | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# split targets to a list w.r.t. multiple levels | |
bbox_anchors_list = images_to_levels(all_bbox_anchors, | |
num_level_squares) | |
bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_squares) | |
return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, | |
avg_factor) | |
def loss_shape_single(self, shape_pred: Tensor, bbox_anchors: Tensor, | |
bbox_gts: Tensor, anchor_weights: Tensor, | |
avg_factor: int) -> Tensor: | |
"""Compute shape loss in single level.""" | |
shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2) | |
bbox_anchors = bbox_anchors.contiguous().view(-1, 4) | |
bbox_gts = bbox_gts.contiguous().view(-1, 4) | |
anchor_weights = anchor_weights.contiguous().view(-1, 4) | |
bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0) | |
bbox_deltas[:, 2:] += shape_pred | |
# filter out negative samples to speed-up weighted_bounded_iou_loss | |
inds = torch.nonzero( | |
anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1) | |
bbox_deltas_ = bbox_deltas[inds] | |
bbox_anchors_ = bbox_anchors[inds] | |
bbox_gts_ = bbox_gts[inds] | |
anchor_weights_ = anchor_weights[inds] | |
pred_anchors_ = self.anchor_coder.decode( | |
bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6) | |
loss_shape = self.loss_shape( | |
pred_anchors_, bbox_gts_, anchor_weights_, avg_factor=avg_factor) | |
return loss_shape | |
def loss_loc_single(self, loc_pred: Tensor, loc_target: Tensor, | |
loc_weight: Tensor, avg_factor: float) -> Tensor: | |
"""Compute location loss in single level.""" | |
loss_loc = self.loss_loc( | |
loc_pred.reshape(-1, 1), | |
loc_target.reshape(-1).long(), | |
loc_weight.reshape(-1), | |
avg_factor=avg_factor) | |
return loss_loc | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
shape_preds: List[Tensor], | |
loc_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
has shape (N, num_anchors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
shape_preds (list[Tensor]): shape predictions for each scale | |
level with shape (N, 1, H, W). | |
loc_preds (list[Tensor]): location predictions for each scale | |
level with shape (N, num_anchors * 2, H, W). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels | |
device = cls_scores[0].device | |
# get loc targets | |
loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets( | |
batch_gt_instances, featmap_sizes) | |
# get sampled approxes | |
approxs_list, inside_flag_list = self.get_sampled_approxs( | |
featmap_sizes, batch_img_metas, device=device) | |
# get squares and guided anchors | |
squares_list, guided_anchors_list, _ = self.get_anchors( | |
featmap_sizes, | |
shape_preds, | |
loc_preds, | |
batch_img_metas, | |
device=device) | |
# get shape targets | |
shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list, | |
squares_list, batch_gt_instances, | |
batch_img_metas) | |
(bbox_anchors_list, bbox_gts_list, anchor_weights_list, | |
ga_avg_factor) = shape_targets | |
# get anchor targets | |
cls_reg_targets = self.get_targets( | |
guided_anchors_list, | |
inside_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
avg_factor) = cls_reg_targets | |
# anchor number of multi levels | |
num_level_anchors = [ | |
anchors.size(0) for anchors in guided_anchors_list[0] | |
] | |
# concat all level anchors to a single tensor | |
concat_anchor_list = [] | |
for i in range(len(guided_anchors_list)): | |
concat_anchor_list.append(torch.cat(guided_anchors_list[i])) | |
all_anchor_list = images_to_levels(concat_anchor_list, | |
num_level_anchors) | |
# get classification and bbox regression losses | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_by_feat_single, | |
cls_scores, | |
bbox_preds, | |
all_anchor_list, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
avg_factor=avg_factor) | |
# get anchor location loss | |
losses_loc = [] | |
for i in range(len(loc_preds)): | |
loss_loc = self.loss_loc_single( | |
loc_preds[i], | |
loc_targets[i], | |
loc_weights[i], | |
avg_factor=loc_avg_factor) | |
losses_loc.append(loss_loc) | |
# get anchor shape loss | |
losses_shape = [] | |
for i in range(len(shape_preds)): | |
loss_shape = self.loss_shape_single( | |
shape_preds[i], | |
bbox_anchors_list[i], | |
bbox_gts_list[i], | |
anchor_weights_list[i], | |
avg_factor=ga_avg_factor) | |
losses_shape.append(loss_shape) | |
return dict( | |
loss_cls=losses_cls, | |
loss_bbox=losses_bbox, | |
loss_shape=losses_shape, | |
loss_loc=losses_loc) | |
def predict_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
shape_preds: List[Tensor], | |
loc_preds: List[Tensor], | |
batch_img_metas: List[dict], | |
cfg: OptConfigType = None, | |
rescale: bool = False) -> InstanceList: | |
"""Transform a batch of output features extracted from the head into | |
bbox results. | |
Args: | |
cls_scores (list[Tensor]): Classification scores for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * 4, H, W). | |
shape_preds (list[Tensor]): shape predictions for each scale | |
level with shape (N, 1, H, W). | |
loc_preds (list[Tensor]): location predictions for each scale | |
level with shape (N, num_anchors * 2, H, W). | |
batch_img_metas (list[dict], Optional): Batch image meta info. | |
Defaults to None. | |
cfg (ConfigDict, optional): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
Defaults to None. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
list[:obj:`InstanceData`]: Object detection results of each image | |
after the post process. Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), the last | |
dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len( | |
loc_preds) | |
num_levels = len(cls_scores) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
device = cls_scores[0].device | |
# get guided anchors | |
_, guided_anchors, loc_masks = self.get_anchors( | |
featmap_sizes, | |
shape_preds, | |
loc_preds, | |
batch_img_metas, | |
use_loc_filter=not self.training, | |
device=device) | |
result_list = [] | |
for img_id in range(len(batch_img_metas)): | |
cls_score_list = [ | |
cls_scores[i][img_id].detach() for i in range(num_levels) | |
] | |
bbox_pred_list = [ | |
bbox_preds[i][img_id].detach() for i in range(num_levels) | |
] | |
guided_anchor_list = [ | |
guided_anchors[img_id][i].detach() for i in range(num_levels) | |
] | |
loc_mask_list = [ | |
loc_masks[img_id][i].detach() for i in range(num_levels) | |
] | |
proposals = self._predict_by_feat_single( | |
cls_scores=cls_score_list, | |
bbox_preds=bbox_pred_list, | |
mlvl_anchors=guided_anchor_list, | |
mlvl_masks=loc_mask_list, | |
img_meta=batch_img_metas[img_id], | |
cfg=cfg, | |
rescale=rescale) | |
result_list.append(proposals) | |
return result_list | |
def _predict_by_feat_single(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
mlvl_anchors: List[Tensor], | |
mlvl_masks: List[Tensor], | |
img_meta: dict, | |
cfg: ConfigType, | |
rescale: bool = False) -> InstanceData: | |
"""Transform a single image's features extracted from the head into | |
bbox results. | |
Args: | |
cls_scores (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
mlvl_anchors (list[Tensor]): Each element in the list is | |
the anchors of a single level in feature pyramid. it has | |
shape (num_priors, 4). | |
mlvl_masks (list[Tensor]): Each element in the list is location | |
masks of a single level. | |
img_meta (dict): Image meta info. | |
cfg (:obj:`ConfigDict` or dict): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), the last | |
dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) | |
mlvl_bbox_preds = [] | |
mlvl_valid_anchors = [] | |
mlvl_scores = [] | |
for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds, | |
mlvl_anchors, | |
mlvl_masks): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
# if no location is kept, end. | |
if mask.sum() == 0: | |
continue | |
# reshape scores and bbox_pred | |
cls_score = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
if self.use_sigmoid_cls: | |
scores = cls_score.sigmoid() | |
else: | |
scores = cls_score.softmax(-1) | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) | |
# filter scores, bbox_pred w.r.t. mask. | |
# anchors are filtered in get_anchors() beforehand. | |
scores = scores[mask, :] | |
bbox_pred = bbox_pred[mask, :] | |
if scores.dim() == 0: | |
anchors = anchors.unsqueeze(0) | |
scores = scores.unsqueeze(0) | |
bbox_pred = bbox_pred.unsqueeze(0) | |
# filter anchors, bbox_pred, scores w.r.t. scores | |
nms_pre = cfg.get('nms_pre', -1) | |
if nms_pre > 0 and scores.shape[0] > nms_pre: | |
if self.use_sigmoid_cls: | |
max_scores, _ = scores.max(dim=1) | |
else: | |
# remind that we set FG labels to [0, num_class-1] | |
# since mmdet v2.0 | |
# BG cat_id: num_class | |
max_scores, _ = scores[:, :-1].max(dim=1) | |
_, topk_inds = max_scores.topk(nms_pre) | |
anchors = anchors[topk_inds, :] | |
bbox_pred = bbox_pred[topk_inds, :] | |
scores = scores[topk_inds, :] | |
mlvl_bbox_preds.append(bbox_pred) | |
mlvl_valid_anchors.append(anchors) | |
mlvl_scores.append(scores) | |
mlvl_bbox_preds = torch.cat(mlvl_bbox_preds) | |
mlvl_anchors = torch.cat(mlvl_valid_anchors) | |
mlvl_scores = torch.cat(mlvl_scores) | |
mlvl_bboxes = self.bbox_coder.decode( | |
mlvl_anchors, mlvl_bbox_preds, max_shape=img_meta['img_shape']) | |
if rescale: | |
assert img_meta.get('scale_factor') is not None | |
mlvl_bboxes /= mlvl_bboxes.new_tensor( | |
img_meta['scale_factor']).repeat((1, 2)) | |
if self.use_sigmoid_cls: | |
# Add a dummy background class to the backend when using sigmoid | |
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0 | |
# BG cat_id: num_class | |
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) | |
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) | |
# multi class NMS | |
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, | |
cfg.score_thr, cfg.nms, | |
cfg.max_per_img) | |
results = InstanceData() | |
results.bboxes = det_bboxes[:, :-1] | |
results.scores = det_bboxes[:, -1] | |
results.labels = det_labels | |
return results | |