Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, Scale | |
from mmengine.model import bias_init_with_prob, normal_init | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.structures.bbox import bbox_overlaps | |
from mmdet.utils import (ConfigType, InstanceList, OptConfigType, | |
OptInstanceList, reduce_mean) | |
from ..task_modules.prior_generators import anchor_inside_flags | |
from ..utils import images_to_levels, multi_apply, unmap | |
from .anchor_head import AnchorHead | |
EPS = 1e-12 | |
class DDODHead(AnchorHead): | |
"""Detection Head of `DDOD <https://arxiv.org/abs/2107.02963>`_. | |
DDOD head decomposes conjunctions lying in most current one-stage | |
detectors via label assignment disentanglement, spatial feature | |
disentanglement, and pyramid supervision disentanglement. | |
Args: | |
num_classes (int): Number of categories excluding the | |
background category. | |
in_channels (int): Number of channels in the input feature map. | |
stacked_convs (int): The number of stacked Conv. Defaults to 4. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True. | |
norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head. | |
Defaults to dict(type='GN', num_groups=32, requires_grad=True). | |
loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to | |
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0). | |
""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
stacked_convs: int = 4, | |
conv_cfg: OptConfigType = None, | |
use_dcn: bool = True, | |
norm_cfg: ConfigType = dict( | |
type='GN', num_groups=32, requires_grad=True), | |
loss_iou: ConfigType = dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0), | |
**kwargs) -> None: | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.use_dcn = use_dcn | |
super().__init__(num_classes, in_channels, **kwargs) | |
if self.train_cfg: | |
self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
self.reg_assigner = TASK_UTILS.build( | |
self.train_cfg['reg_assigner']) | |
self.loss_iou = MODELS.build(loss_iou) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=dict(type='DCN', deform_groups=1) | |
if i == 0 and self.use_dcn else self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=dict(type='DCN', deform_groups=1) | |
if i == 0 and self.use_dcn else self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.atss_cls = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
3, | |
padding=1) | |
self.atss_reg = nn.Conv2d( | |
self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
self.atss_iou = nn.Conv2d( | |
self.feat_channels, self.num_base_priors * 1, 3, padding=1) | |
self.scales = nn.ModuleList( | |
[Scale(1.0) for _ in self.prior_generator.strides]) | |
# we use the global list in loss | |
self.cls_num_pos_samples_per_level = [ | |
0. for _ in range(len(self.prior_generator.strides)) | |
] | |
self.reg_num_pos_samples_per_level = [ | |
0. for _ in range(len(self.prior_generator.strides)) | |
] | |
def init_weights(self) -> None: | |
"""Initialize weights of the head.""" | |
for m in self.cls_convs: | |
normal_init(m.conv, std=0.01) | |
for m in self.reg_convs: | |
normal_init(m.conv, std=0.01) | |
normal_init(self.atss_reg, std=0.01) | |
normal_init(self.atss_iou, std=0.01) | |
bias_cls = bias_init_with_prob(0.01) | |
normal_init(self.atss_cls, std=0.01, bias=bias_cls) | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network. | |
Args: | |
x (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: A tuple of classification scores, bbox predictions, | |
and iou predictions. | |
- cls_scores (list[Tensor]): Classification scores for all \ | |
scale levels, each is a 4D-tensor, the channels number is \ | |
num_base_priors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all \ | |
scale levels, each is a 4D-tensor, the channels number is \ | |
num_base_priors * 4. | |
- iou_preds (list[Tensor]): IoU scores for all scale levels, \ | |
each is a 4D-tensor, the channels number is num_base_priors * 1. | |
""" | |
return multi_apply(self.forward_single, x, self.scales) | |
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
Returns: | |
tuple: | |
- cls_score (Tensor): Cls scores for a single scale level \ | |
the channels number is num_base_priors * num_classes. | |
- bbox_pred (Tensor): Box energies / deltas for a single \ | |
scale level, the channels number is num_base_priors * 4. | |
- iou_pred (Tensor): Iou for a single scale level, the \ | |
channel number is (N, num_base_priors * 1, H, W). | |
""" | |
cls_feat = x | |
reg_feat = x | |
for cls_conv in self.cls_convs: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs: | |
reg_feat = reg_conv(reg_feat) | |
cls_score = self.atss_cls(cls_feat) | |
# we just follow atss, not apply exp in bbox_pred | |
bbox_pred = scale(self.atss_reg(reg_feat)).float() | |
iou_pred = self.atss_iou(reg_feat) | |
return cls_score, bbox_pred, iou_pred | |
def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor, | |
label_weights: Tensor, | |
reweight_factor: List[float], | |
avg_factor: float) -> Tuple[Tensor]: | |
"""Compute cls loss of a single scale level. | |
Args: | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_base_priors * num_classes, H, W). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
reweight_factor (List[float]): Reweight factor for cls and reg | |
loss. | |
avg_factor (float): Average factor that is used to average | |
the loss. When using sampling method, avg_factor is usually | |
the sum of positive and negative priors. When using | |
`PseudoSampler`, `avg_factor` is usually equal to the number | |
of positive priors. | |
Returns: | |
Tuple[Tensor]: A tuple of loss components. | |
""" | |
cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
-1, self.cls_out_channels).contiguous() | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
loss_cls = self.loss_cls( | |
cls_score, labels, label_weights, avg_factor=avg_factor) | |
return reweight_factor * loss_cls, | |
def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor, | |
iou_pred: Tensor, labels, | |
label_weights: Tensor, bbox_targets: Tensor, | |
bbox_weights: Tensor, | |
reweight_factor: List[float], | |
avg_factor: float) -> Tuple[Tensor, Tensor]: | |
"""Compute reg loss of a single scale level based on the features | |
extracted by the detection head. | |
Args: | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_base_priors * 4, H, W). | |
iou_pred (Tensor): Iou for a single scale level, the | |
channel number is (N, num_base_priors * 1, H, W). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (N, num_total_anchors, 4). | |
bbox_weights (Tensor): BBox weights of all anchors in the | |
image with shape (N, 4) | |
reweight_factor (List[float]): Reweight factor for cls and reg | |
loss. | |
avg_factor (float): Average factor that is used to average | |
the loss. When using sampling method, avg_factor is usually | |
the sum of positive and negative priors. When using | |
`PseudoSampler`, `avg_factor` is usually equal to the number | |
of positive priors. | |
Returns: | |
Tuple[Tensor, Tensor]: A tuple of loss components. | |
""" | |
anchors = anchors.reshape(-1, 4) | |
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, ) | |
bbox_targets = bbox_targets.reshape(-1, 4) | |
bbox_weights = bbox_weights.reshape(-1, 4) | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
iou_targets = label_weights.new_zeros(labels.shape) | |
iou_weights = label_weights.new_zeros(labels.shape) | |
iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero( | |
as_tuple=False)] = 1. | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = ((labels >= 0) | |
& | |
(labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1) | |
if len(pos_inds) > 0: | |
pos_bbox_targets = bbox_targets[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_anchors = anchors[pos_inds] | |
pos_decode_bbox_pred = self.bbox_coder.decode( | |
pos_anchors, pos_bbox_pred) | |
pos_decode_bbox_targets = self.bbox_coder.decode( | |
pos_anchors, pos_bbox_targets) | |
# regression loss | |
loss_bbox = self.loss_bbox( | |
pos_decode_bbox_pred, | |
pos_decode_bbox_targets, | |
avg_factor=avg_factor) | |
iou_targets[pos_inds] = bbox_overlaps( | |
pos_decode_bbox_pred.detach(), | |
pos_decode_bbox_targets, | |
is_aligned=True) | |
loss_iou = self.loss_iou( | |
iou_pred, iou_targets, iou_weights, avg_factor=avg_factor) | |
else: | |
loss_bbox = bbox_pred.sum() * 0 | |
loss_iou = iou_pred.sum() * 0 | |
return reweight_factor * loss_bbox, reweight_factor * loss_iou | |
def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]: | |
"""Compute reweight_factor for regression and classification loss.""" | |
# get pos samples for each level | |
bg_class_ind = self.num_classes | |
for ii, each_level_label in enumerate(labels_list): | |
pos_inds = ((each_level_label >= 0) & | |
(each_level_label < bg_class_ind)).nonzero( | |
as_tuple=False).squeeze(1) | |
self.cls_num_pos_samples_per_level[ii] += len(pos_inds) | |
# get reweight factor from 1 ~ 2 with bilinear interpolation | |
min_pos_samples = min(self.cls_num_pos_samples_per_level) | |
max_pos_samples = max(self.cls_num_pos_samples_per_level) | |
interval = 1. / (max_pos_samples - min_pos_samples + 1e-10) | |
reweight_factor_per_level = [] | |
for pos_samples in self.cls_num_pos_samples_per_level: | |
factor = 2. - (pos_samples - min_pos_samples) * interval | |
reweight_factor_per_level.append(factor) | |
return reweight_factor_per_level | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
iou_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_base_priors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_base_priors * 4, H, W) | |
iou_preds (list[Tensor]): Score factor for all scale level, | |
each is a 4D-tensor, has shape (batch_size, 1, H, W). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
# calculate common vars for cls and reg assigners at once | |
targets_com = self.process_predictions_and_anchors( | |
anchor_list, valid_flag_list, cls_scores, bbox_preds, | |
batch_img_metas, batch_gt_instances_ignore) | |
(anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, | |
bbox_pred_list, batch_gt_instances_ignore) = targets_com | |
# classification branch assigner | |
cls_targets = self.get_cls_targets( | |
anchor_list, | |
valid_flag_list, | |
num_level_anchors_list, | |
cls_score_list, | |
bbox_pred_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(cls_anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, avg_factor) = cls_targets | |
avg_factor = reduce_mean( | |
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
avg_factor = max(avg_factor, 1.0) | |
reweight_factor_per_level = self.calc_reweight_factor(labels_list) | |
cls_losses_cls, = multi_apply( | |
self.loss_cls_by_feat_single, | |
cls_scores, | |
labels_list, | |
label_weights_list, | |
reweight_factor_per_level, | |
avg_factor=avg_factor) | |
# regression branch assigner | |
reg_targets = self.get_reg_targets( | |
anchor_list, | |
valid_flag_list, | |
num_level_anchors_list, | |
cls_score_list, | |
bbox_pred_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(reg_anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, avg_factor) = reg_targets | |
avg_factor = reduce_mean( | |
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
avg_factor = max(avg_factor, 1.0) | |
reweight_factor_per_level = self.calc_reweight_factor(labels_list) | |
reg_losses_bbox, reg_losses_iou = multi_apply( | |
self.loss_reg_by_feat_single, | |
reg_anchor_list, | |
bbox_preds, | |
iou_preds, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
reweight_factor_per_level, | |
avg_factor=avg_factor) | |
return dict( | |
loss_cls=cls_losses_cls, | |
loss_bbox=reg_losses_bbox, | |
loss_iou=reg_losses_iou) | |
def process_predictions_and_anchors( | |
self, | |
anchor_list: List[List[Tensor]], | |
valid_flag_list: List[List[Tensor]], | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> tuple: | |
"""Compute common vars for regression and classification targets. | |
Args: | |
anchor_list (List[List[Tensor]]): anchors of each image. | |
valid_flag_list (List[List[Tensor]]): Valid flags of each image. | |
cls_scores (List[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * 4. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Return: | |
tuple[Tensor]: A tuple of common loss vars. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
num_level_anchors_list = [num_level_anchors] * num_imgs | |
anchor_list_ = [] | |
valid_flag_list_ = [] | |
# concat all level anchors and flags to a single tensor | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
anchor_list_.append(torch.cat(anchor_list[i])) | |
valid_flag_list_.append(torch.cat(valid_flag_list[i])) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None for _ in range(num_imgs)] | |
num_levels = len(cls_scores) | |
cls_score_list = [] | |
bbox_pred_list = [] | |
mlvl_cls_score_list = [ | |
cls_score.permute(0, 2, 3, 1).reshape( | |
num_imgs, -1, self.num_base_priors * self.cls_out_channels) | |
for cls_score in cls_scores | |
] | |
mlvl_bbox_pred_list = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.num_base_priors * 4) | |
for bbox_pred in bbox_preds | |
] | |
for i in range(num_imgs): | |
mlvl_cls_tensor_list = [ | |
mlvl_cls_score_list[j][i] for j in range(num_levels) | |
] | |
mlvl_bbox_tensor_list = [ | |
mlvl_bbox_pred_list[j][i] for j in range(num_levels) | |
] | |
cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0) | |
cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0) | |
cls_score_list.append(cat_mlvl_cls_score) | |
bbox_pred_list.append(cat_mlvl_bbox_pred) | |
return (anchor_list_, valid_flag_list_, num_level_anchors_list, | |
cls_score_list, bbox_pred_list, batch_gt_instances_ignore) | |
def get_cls_targets(self, | |
anchor_list: List[Tensor], | |
valid_flag_list: List[Tensor], | |
num_level_anchors_list: List[int], | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Get cls targets for DDOD head. | |
This method is almost the same as `AnchorHead.get_targets()`. | |
Besides returning the targets as the parent method does, | |
it also returns the anchors as the first element of the | |
returned tuple. | |
Args: | |
anchor_list (list[Tensor]): anchors of each image. | |
valid_flag_list (list[Tensor]): Valid flags of each image. | |
num_level_anchors_list (list[Tensor]): Number of anchors of each | |
scale level of all image. | |
cls_score_list (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * num_classes. | |
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * 4. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Return: | |
tuple[Tensor]: A tuple of cls targets components. | |
""" | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_bbox_weights, pos_inds_list, neg_inds_list, | |
sampling_results_list) = multi_apply( | |
self._get_targets_single, | |
anchor_list, | |
valid_flag_list, | |
cls_score_list, | |
bbox_pred_list, | |
num_level_anchors_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs, | |
is_cls_assigner=True) | |
# Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
# When using sampling method, avg_factor is usually the sum of | |
# positive and negative priors. When using `PseudoSampler`, | |
# `avg_factor` is usually equal to the number of positive priors. | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# split targets to a list w.r.t. multiple levels | |
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) | |
labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors_list[0]) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors_list[0]) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors_list[0]) | |
return (anchors_list, labels_list, label_weights_list, | |
bbox_targets_list, bbox_weights_list, avg_factor) | |
def get_reg_targets(self, | |
anchor_list: List[Tensor], | |
valid_flag_list: List[Tensor], | |
num_level_anchors_list: List[int], | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Get reg targets for DDOD head. | |
This method is almost the same as `AnchorHead.get_targets()` when | |
is_cls_assigner is False. Besides returning the targets as the parent | |
method does, it also returns the anchors as the first element of the | |
returned tuple. | |
Args: | |
anchor_list (list[Tensor]): anchors of each image. | |
valid_flag_list (list[Tensor]): Valid flags of each image. | |
num_level_anchors_list (list[Tensor]): Number of anchors of each | |
scale level of all image. | |
cls_score_list (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * num_classes. | |
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_base_priors * 4. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Return: | |
tuple[Tensor]: A tuple of reg targets components. | |
""" | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_bbox_weights, pos_inds_list, neg_inds_list, | |
sampling_results_list) = multi_apply( | |
self._get_targets_single, | |
anchor_list, | |
valid_flag_list, | |
cls_score_list, | |
bbox_pred_list, | |
num_level_anchors_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs, | |
is_cls_assigner=False) | |
# Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
# When using sampling method, avg_factor is usually the sum of | |
# positive and negative priors. When using `PseudoSampler`, | |
# `avg_factor` is usually equal to the number of positive priors. | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# split targets to a list w.r.t. multiple levels | |
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) | |
labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors_list[0]) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors_list[0]) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors_list[0]) | |
return (anchors_list, labels_list, label_weights_list, | |
bbox_targets_list, bbox_weights_list, avg_factor) | |
def _get_targets_single(self, | |
flat_anchors: Tensor, | |
valid_flags: Tensor, | |
cls_scores: Tensor, | |
bbox_preds: Tensor, | |
num_level_anchors: List[int], | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True, | |
is_cls_assigner: bool = True) -> tuple: | |
"""Compute regression, classification targets for anchors in a single | |
image. | |
Args: | |
flat_anchors (Tensor): Multi-level anchors of the image, | |
which are concatenated into a single tensor of shape | |
(num_base_priors, 4). | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_base_priors,). | |
cls_scores (Tensor): Classification scores for all scale | |
levels of the image. | |
bbox_preds (Tensor): Box energies / deltas for all scale | |
levels of the image. | |
num_level_anchors (List[int]): Number of anchors of each | |
scale level. | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
is_cls_assigner (bool): Classification or regression. | |
Defaults to True. | |
Returns: | |
tuple: N is the number of total anchors in the image. | |
- anchors (Tensor): all anchors in the image with shape (N, 4). | |
- labels (Tensor): Labels of all anchors in the image with \ | |
shape (N, ). | |
- label_weights (Tensor): Label weights of all anchor in the \ | |
image with shape (N, ). | |
- bbox_targets (Tensor): BBox targets of all anchors in the \ | |
image with shape (N, 4). | |
- bbox_weights (Tensor): BBox weights of all anchors in the \ | |
image with shape (N, 4) | |
- pos_inds (Tensor): Indices of positive anchor with shape \ | |
(num_pos, ). | |
- neg_inds (Tensor): Indices of negative anchor with shape \ | |
(num_neg, ). | |
- sampling_result (:obj:`SamplingResult`): Sampling results. | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg['allowed_border']) | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags, :] | |
num_level_anchors_inside = self.get_num_level_anchors_inside( | |
num_level_anchors, inside_flags) | |
bbox_preds_valid = bbox_preds[inside_flags, :] | |
cls_scores_valid = cls_scores[inside_flags, :] | |
assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner | |
# decode prediction out of assigner | |
bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid) | |
pred_instances = InstanceData( | |
priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid) | |
assign_result = assigner.assign( | |
pred_instances=pred_instances, | |
num_level_priors=num_level_anchors_inside, | |
gt_instances=gt_instances, | |
gt_instances_ignore=gt_instances_ignore) | |
sampling_result = self.sampler.sample( | |
assign_result=assign_result, | |
pred_instances=pred_instances, | |
gt_instances=gt_instances) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
bbox_weights = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
pos_bbox_targets = self.bbox_coder.encode( | |
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
labels[pos_inds] = sampling_result.pos_gt_labels | |
if self.train_cfg['pos_weight'] <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
anchors = unmap(anchors, num_total_anchors, inside_flags) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
pos_inds, neg_inds, sampling_result) | |
def get_num_level_anchors_inside(self, num_level_anchors: List[int], | |
inside_flags: Tensor) -> List[int]: | |
"""Get the anchors of each scale level inside. | |
Args: | |
num_level_anchors (list[int]): Number of anchors of each | |
scale level. | |
inside_flags (Tensor): Multi level inside flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_base_priors,). | |
Returns: | |
list[int]: Number of anchors of each scale level inside. | |
""" | |
split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
num_level_anchors_inside = [ | |
int(flags.sum()) for flags in split_inside_flags | |
] | |
return num_level_anchors_inside | |