KyanChen's picture
init
f549064
raw
history blame
21.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d
from mmengine.model import normal_init
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList,
OptMultiConfig)
from ..utils import multi_apply
from .corner_head import CornerHead
@MODELS.register_module()
class CentripetalHead(CornerHead):
"""Head of CentripetalNet: Pursuing High-quality Keypoint Pairs for Object
Detection.
CentripetalHead inherits from :class:`CornerHead`. It removes the
embedding branch and adds guiding shift and centripetal shift branches.
More details can be found in the `paper
<https://arxiv.org/abs/2003.09119>`_ .
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
num_feat_levels (int): Levels of feature from the previous module.
2 for HourglassNet-104 and 1 for HourglassNet-52. HourglassNet-104
outputs the final feature and intermediate supervision feature and
HourglassNet-52 only outputs the final feature. Defaults to 2.
corner_emb_channels (int): Channel of embedding vector. Defaults to 1.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config.
Useless in CornerHead, but we keep this variable for
SingleStageDetector.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
CornerHead.
loss_heatmap (:obj:`ConfigDict` or dict): Config of corner heatmap
loss. Defaults to GaussianFocalLoss.
loss_embedding (:obj:`ConfigDict` or dict): Config of corner embedding
loss. Defaults to AssociativeEmbeddingLoss.
loss_offset (:obj:`ConfigDict` or dict): Config of corner offset loss.
Defaults to SmoothL1Loss.
loss_guiding_shift (:obj:`ConfigDict` or dict): Config of
guiding shift loss. Defaults to SmoothL1Loss.
loss_centripetal_shift (:obj:`ConfigDict` or dict): Config of
centripetal shift loss. Defaults to SmoothL1Loss.
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
the initialization.
"""
def __init__(self,
*args,
centripetal_shift_channels: int = 2,
guiding_shift_channels: int = 2,
feat_adaption_conv_kernel: int = 3,
loss_guiding_shift: ConfigType = dict(
type='SmoothL1Loss', beta=1.0, loss_weight=0.05),
loss_centripetal_shift: ConfigType = dict(
type='SmoothL1Loss', beta=1.0, loss_weight=1),
init_cfg: OptMultiConfig = None,
**kwargs) -> None:
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
assert centripetal_shift_channels == 2, (
'CentripetalHead only support centripetal_shift_channels == 2')
self.centripetal_shift_channels = centripetal_shift_channels
assert guiding_shift_channels == 2, (
'CentripetalHead only support guiding_shift_channels == 2')
self.guiding_shift_channels = guiding_shift_channels
self.feat_adaption_conv_kernel = feat_adaption_conv_kernel
super().__init__(*args, init_cfg=init_cfg, **kwargs)
self.loss_guiding_shift = MODELS.build(loss_guiding_shift)
self.loss_centripetal_shift = MODELS.build(loss_centripetal_shift)
def _init_centripetal_layers(self) -> None:
"""Initialize centripetal layers.
Including feature adaption deform convs (feat_adaption), deform offset
prediction convs (dcn_off), guiding shift (guiding_shift) and
centripetal shift ( centripetal_shift). Each branch has two parts:
prefix `tl_` for top-left and `br_` for bottom-right.
"""
self.tl_feat_adaption = nn.ModuleList()
self.br_feat_adaption = nn.ModuleList()
self.tl_dcn_offset = nn.ModuleList()
self.br_dcn_offset = nn.ModuleList()
self.tl_guiding_shift = nn.ModuleList()
self.br_guiding_shift = nn.ModuleList()
self.tl_centripetal_shift = nn.ModuleList()
self.br_centripetal_shift = nn.ModuleList()
for _ in range(self.num_feat_levels):
self.tl_feat_adaption.append(
DeformConv2d(self.in_channels, self.in_channels,
self.feat_adaption_conv_kernel, 1, 1))
self.br_feat_adaption.append(
DeformConv2d(self.in_channels, self.in_channels,
self.feat_adaption_conv_kernel, 1, 1))
self.tl_guiding_shift.append(
self._make_layers(
out_channels=self.guiding_shift_channels,
in_channels=self.in_channels))
self.br_guiding_shift.append(
self._make_layers(
out_channels=self.guiding_shift_channels,
in_channels=self.in_channels))
self.tl_dcn_offset.append(
ConvModule(
self.guiding_shift_channels,
self.feat_adaption_conv_kernel**2 *
self.guiding_shift_channels,
1,
bias=False,
act_cfg=None))
self.br_dcn_offset.append(
ConvModule(
self.guiding_shift_channels,
self.feat_adaption_conv_kernel**2 *
self.guiding_shift_channels,
1,
bias=False,
act_cfg=None))
self.tl_centripetal_shift.append(
self._make_layers(
out_channels=self.centripetal_shift_channels,
in_channels=self.in_channels))
self.br_centripetal_shift.append(
self._make_layers(
out_channels=self.centripetal_shift_channels,
in_channels=self.in_channels))
def _init_layers(self) -> None:
"""Initialize layers for CentripetalHead.
Including two parts: CornerHead layers and CentripetalHead layers
"""
super()._init_layers() # using _init_layers in CornerHead
self._init_centripetal_layers()
def init_weights(self) -> None:
super().init_weights()
for i in range(self.num_feat_levels):
normal_init(self.tl_feat_adaption[i], std=0.01)
normal_init(self.br_feat_adaption[i], std=0.01)
normal_init(self.tl_dcn_offset[i].conv, std=0.1)
normal_init(self.br_dcn_offset[i].conv, std=0.1)
_ = [x.conv.reset_parameters() for x in self.tl_guiding_shift[i]]
_ = [x.conv.reset_parameters() for x in self.br_guiding_shift[i]]
_ = [
x.conv.reset_parameters() for x in self.tl_centripetal_shift[i]
]
_ = [
x.conv.reset_parameters() for x in self.br_centripetal_shift[i]
]
def forward_single(self, x: Tensor, lvl_ind: int) -> List[Tensor]:
"""Forward feature of a single level.
Args:
x (Tensor): Feature of a single level.
lvl_ind (int): Level index of current feature.
Returns:
tuple[Tensor]: A tuple of CentripetalHead's output for current
feature level. Containing the following Tensors:
- tl_heat (Tensor): Predicted top-left corner heatmap.
- br_heat (Tensor): Predicted bottom-right corner heatmap.
- tl_off (Tensor): Predicted top-left offset heatmap.
- br_off (Tensor): Predicted bottom-right offset heatmap.
- tl_guiding_shift (Tensor): Predicted top-left guiding shift
heatmap.
- br_guiding_shift (Tensor): Predicted bottom-right guiding
shift heatmap.
- tl_centripetal_shift (Tensor): Predicted top-left centripetal
shift heatmap.
- br_centripetal_shift (Tensor): Predicted bottom-right
centripetal shift heatmap.
"""
tl_heat, br_heat, _, _, tl_off, br_off, tl_pool, br_pool = super(
).forward_single(
x, lvl_ind, return_pool=True)
tl_guiding_shift = self.tl_guiding_shift[lvl_ind](tl_pool)
br_guiding_shift = self.br_guiding_shift[lvl_ind](br_pool)
tl_dcn_offset = self.tl_dcn_offset[lvl_ind](tl_guiding_shift.detach())
br_dcn_offset = self.br_dcn_offset[lvl_ind](br_guiding_shift.detach())
tl_feat_adaption = self.tl_feat_adaption[lvl_ind](tl_pool,
tl_dcn_offset)
br_feat_adaption = self.br_feat_adaption[lvl_ind](br_pool,
br_dcn_offset)
tl_centripetal_shift = self.tl_centripetal_shift[lvl_ind](
tl_feat_adaption)
br_centripetal_shift = self.br_centripetal_shift[lvl_ind](
br_feat_adaption)
result_list = [
tl_heat, br_heat, tl_off, br_off, tl_guiding_shift,
br_guiding_shift, tl_centripetal_shift, br_centripetal_shift
]
return result_list
def loss_by_feat(
self,
tl_heats: List[Tensor],
br_heats: List[Tensor],
tl_offs: List[Tensor],
br_offs: List[Tensor],
tl_guiding_shifts: List[Tensor],
br_guiding_shifts: List[Tensor],
tl_centripetal_shifts: List[Tensor],
br_centripetal_shifts: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
tl_heats (list[Tensor]): Top-left corner heatmaps for each level
with shape (N, num_classes, H, W).
br_heats (list[Tensor]): Bottom-right corner heatmaps for each
level with shape (N, num_classes, H, W).
tl_offs (list[Tensor]): Top-left corner offsets for each level
with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]): Bottom-right corner offsets for each level
with shape (N, corner_offset_channels, H, W).
tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each
level with shape (N, guiding_shift_channels, H, W).
br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for
each level with shape (N, guiding_shift_channels, H, W).
tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts
for each level with shape (N, centripetal_shift_channels, H,
W).
br_centripetal_shifts (list[Tensor]): Bottom-right centripetal
shifts for each level with shape (N,
centripetal_shift_channels, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Specify which bounding boxes can be ignored when computing
the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components. Containing the
following losses:
- det_loss (list[Tensor]): Corner keypoint losses of all
feature levels.
- off_loss (list[Tensor]): Corner offset losses of all feature
levels.
- guiding_loss (list[Tensor]): Guiding shift losses of all
feature levels.
- centripetal_loss (list[Tensor]): Centripetal shift losses of
all feature levels.
"""
gt_bboxes = [
gt_instances.bboxes for gt_instances in batch_gt_instances
]
gt_labels = [
gt_instances.labels for gt_instances in batch_gt_instances
]
targets = self.get_targets(
gt_bboxes,
gt_labels,
tl_heats[-1].shape,
batch_img_metas[0]['batch_input_shape'],
with_corner_emb=self.with_corner_emb,
with_guiding_shift=True,
with_centripetal_shift=True)
mlvl_targets = [targets for _ in range(self.num_feat_levels)]
[det_losses, off_losses, guiding_losses, centripetal_losses
] = multi_apply(self.loss_by_feat_single, tl_heats, br_heats, tl_offs,
br_offs, tl_guiding_shifts, br_guiding_shifts,
tl_centripetal_shifts, br_centripetal_shifts,
mlvl_targets)
loss_dict = dict(
det_loss=det_losses,
off_loss=off_losses,
guiding_loss=guiding_losses,
centripetal_loss=centripetal_losses)
return loss_dict
def loss_by_feat_single(self, tl_hmp: Tensor, br_hmp: Tensor,
tl_off: Tensor, br_off: Tensor,
tl_guiding_shift: Tensor, br_guiding_shift: Tensor,
tl_centripetal_shift: Tensor,
br_centripetal_shift: Tensor,
targets: dict) -> Tuple[Tensor, ...]:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
tl_hmp (Tensor): Top-left corner heatmap for current level with
shape (N, num_classes, H, W).
br_hmp (Tensor): Bottom-right corner heatmap for current level with
shape (N, num_classes, H, W).
tl_off (Tensor): Top-left corner offset for current level with
shape (N, corner_offset_channels, H, W).
br_off (Tensor): Bottom-right corner offset for current level with
shape (N, corner_offset_channels, H, W).
tl_guiding_shift (Tensor): Top-left guiding shift for current level
with shape (N, guiding_shift_channels, H, W).
br_guiding_shift (Tensor): Bottom-right guiding shift for current
level with shape (N, guiding_shift_channels, H, W).
tl_centripetal_shift (Tensor): Top-left centripetal shift for
current level with shape (N, centripetal_shift_channels, H, W).
br_centripetal_shift (Tensor): Bottom-right centripetal shift for
current level with shape (N, centripetal_shift_channels, H, W).
targets (dict): Corner target generated by `get_targets`.
Returns:
tuple[torch.Tensor]: Losses of the head's different branches
containing the following losses:
- det_loss (Tensor): Corner keypoint loss.
- off_loss (Tensor): Corner offset loss.
- guiding_loss (Tensor): Guiding shift loss.
- centripetal_loss (Tensor): Centripetal shift loss.
"""
targets['corner_embedding'] = None
det_loss, _, _, off_loss = super().loss_by_feat_single(
tl_hmp, br_hmp, None, None, tl_off, br_off, targets)
gt_tl_guiding_shift = targets['topleft_guiding_shift']
gt_br_guiding_shift = targets['bottomright_guiding_shift']
gt_tl_centripetal_shift = targets['topleft_centripetal_shift']
gt_br_centripetal_shift = targets['bottomright_centripetal_shift']
gt_tl_heatmap = targets['topleft_heatmap']
gt_br_heatmap = targets['bottomright_heatmap']
# We only compute the offset loss at the real corner position.
# The value of real corner would be 1 in heatmap ground truth.
# The mask is computed in class agnostic mode and its shape is
# batch * 1 * width * height.
tl_mask = gt_tl_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
gt_tl_heatmap)
br_mask = gt_br_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
gt_br_heatmap)
# Guiding shift loss
tl_guiding_loss = self.loss_guiding_shift(
tl_guiding_shift,
gt_tl_guiding_shift,
tl_mask,
avg_factor=tl_mask.sum())
br_guiding_loss = self.loss_guiding_shift(
br_guiding_shift,
gt_br_guiding_shift,
br_mask,
avg_factor=br_mask.sum())
guiding_loss = (tl_guiding_loss + br_guiding_loss) / 2.0
# Centripetal shift loss
tl_centripetal_loss = self.loss_centripetal_shift(
tl_centripetal_shift,
gt_tl_centripetal_shift,
tl_mask,
avg_factor=tl_mask.sum())
br_centripetal_loss = self.loss_centripetal_shift(
br_centripetal_shift,
gt_br_centripetal_shift,
br_mask,
avg_factor=br_mask.sum())
centripetal_loss = (tl_centripetal_loss + br_centripetal_loss) / 2.0
return det_loss, off_loss, guiding_loss, centripetal_loss
def predict_by_feat(self,
tl_heats: List[Tensor],
br_heats: List[Tensor],
tl_offs: List[Tensor],
br_offs: List[Tensor],
tl_guiding_shifts: List[Tensor],
br_guiding_shifts: List[Tensor],
tl_centripetal_shifts: List[Tensor],
br_centripetal_shifts: List[Tensor],
batch_img_metas: Optional[List[dict]] = None,
rescale: bool = False,
with_nms: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
tl_heats (list[Tensor]): Top-left corner heatmaps for each level
with shape (N, num_classes, H, W).
br_heats (list[Tensor]): Bottom-right corner heatmaps for each
level with shape (N, num_classes, H, W).
tl_offs (list[Tensor]): Top-left corner offsets for each level
with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]): Bottom-right corner offsets for each level
with shape (N, corner_offset_channels, H, W).
tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each
level with shape (N, guiding_shift_channels, H, W). Useless in
this function, we keep this arg because it's the raw output
from CentripetalHead.
br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for
each level with shape (N, guiding_shift_channels, H, W).
Useless in this function, we keep this arg because it's the
raw output from CentripetalHead.
tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts
for each level with shape (N, centripetal_shift_channels, H,
W).
br_centripetal_shifts (list[Tensor]): Bottom-right centripetal
shifts for each level with shape (N,
centripetal_shift_channels, H, W).
batch_img_metas (list[dict], optional): Batch image meta info.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(
batch_img_metas)
result_list = []
for img_id in range(len(batch_img_metas)):
result_list.append(
self._predict_by_feat_single(
tl_heats[-1][img_id:img_id + 1, :],
br_heats[-1][img_id:img_id + 1, :],
tl_offs[-1][img_id:img_id + 1, :],
br_offs[-1][img_id:img_id + 1, :],
batch_img_metas[img_id],
tl_emb=None,
br_emb=None,
tl_centripetal_shift=tl_centripetal_shifts[-1][
img_id:img_id + 1, :],
br_centripetal_shift=br_centripetal_shifts[-1][
img_id:img_id + 1, :],
rescale=rescale,
with_nms=with_nms))
return result_list