Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import Scale | |
from mmengine.model import bias_init_with_prob, normal_init | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures.bbox import bbox_overlaps | |
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean | |
from ..task_modules.prior_generators import MlvlPointGenerator | |
from ..utils import levels_to_images, multi_apply | |
from .fcos_head import FCOSHead | |
EPS = 1e-12 | |
class CenterPrior(nn.Module): | |
"""Center Weighting module to adjust the category-specific prior | |
distributions. | |
Args: | |
force_topk (bool): When no point falls into gt_bbox, forcibly | |
select the k points closest to the center to calculate | |
the center prior. Defaults to False. | |
topk (int): The number of points used to calculate the | |
center prior when no point falls in gt_bbox. Only work when | |
force_topk if True. Defaults to 9. | |
num_classes (int): The class number of dataset. Defaults to 80. | |
strides (Sequence[int]): The stride of each input feature map. | |
Defaults to (8, 16, 32, 64, 128). | |
""" | |
def __init__( | |
self, | |
force_topk: bool = False, | |
topk: int = 9, | |
num_classes: int = 80, | |
strides: Sequence[int] = (8, 16, 32, 64, 128) | |
) -> None: | |
super().__init__() | |
self.mean = nn.Parameter(torch.zeros(num_classes, 2)) | |
self.sigma = nn.Parameter(torch.ones(num_classes, 2)) | |
self.strides = strides | |
self.force_topk = force_topk | |
self.topk = topk | |
def forward(self, anchor_points_list: List[Tensor], | |
gt_instances: InstanceData, | |
inside_gt_bbox_mask: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Get the center prior of each point on the feature map for each | |
instance. | |
Args: | |
anchor_points_list (list[Tensor]): list of coordinate | |
of points on feature map. Each with shape | |
(num_points, 2). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
inside_gt_bbox_mask (Tensor): Tensor of bool type, | |
with shape of (num_points, num_gt), each | |
value is used to mark whether this point falls | |
within a certain gt. | |
Returns: | |
tuple[Tensor, Tensor]: | |
- center_prior_weights(Tensor): Float tensor with shape of \ | |
(num_points, num_gt). Each value represents the center \ | |
weighting coefficient. | |
- inside_gt_bbox_mask (Tensor): Tensor of bool type, with shape \ | |
of (num_points, num_gt), each value is used to mark whether this \ | |
point falls within a certain gt or is the topk nearest points for \ | |
a specific gt_bbox. | |
""" | |
gt_bboxes = gt_instances.bboxes | |
labels = gt_instances.labels | |
inside_gt_bbox_mask = inside_gt_bbox_mask.clone() | |
num_gts = len(labels) | |
num_points = sum([len(item) for item in anchor_points_list]) | |
if num_gts == 0: | |
return gt_bboxes.new_zeros(num_points, | |
num_gts), inside_gt_bbox_mask | |
center_prior_list = [] | |
for slvl_points, stride in zip(anchor_points_list, self.strides): | |
# slvl_points: points from single level in FPN, has shape (h*w, 2) | |
# single_level_points has shape (h*w, num_gt, 2) | |
single_level_points = slvl_points[:, None, :].expand( | |
(slvl_points.size(0), len(gt_bboxes), 2)) | |
gt_center_x = ((gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2) | |
gt_center_y = ((gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2) | |
gt_center = torch.stack((gt_center_x, gt_center_y), dim=1) | |
gt_center = gt_center[None] | |
# instance_center has shape (1, num_gt, 2) | |
instance_center = self.mean[labels][None] | |
# instance_sigma has shape (1, num_gt, 2) | |
instance_sigma = self.sigma[labels][None] | |
# distance has shape (num_points, num_gt, 2) | |
distance = (((single_level_points - gt_center) / float(stride) - | |
instance_center)**2) | |
center_prior = torch.exp(-distance / | |
(2 * instance_sigma**2)).prod(dim=-1) | |
center_prior_list.append(center_prior) | |
center_prior_weights = torch.cat(center_prior_list, dim=0) | |
if self.force_topk: | |
gt_inds_no_points_inside = torch.nonzero( | |
inside_gt_bbox_mask.sum(0) == 0).reshape(-1) | |
if gt_inds_no_points_inside.numel(): | |
topk_center_index = \ | |
center_prior_weights[:, gt_inds_no_points_inside].topk( | |
self.topk, | |
dim=0)[1] | |
temp_mask = inside_gt_bbox_mask[:, gt_inds_no_points_inside] | |
inside_gt_bbox_mask[:, gt_inds_no_points_inside] = \ | |
torch.scatter(temp_mask, | |
dim=0, | |
index=topk_center_index, | |
src=torch.ones_like( | |
topk_center_index, | |
dtype=torch.bool)) | |
center_prior_weights[~inside_gt_bbox_mask] = 0 | |
return center_prior_weights, inside_gt_bbox_mask | |
class AutoAssignHead(FCOSHead): | |
"""AutoAssignHead head used in AutoAssign. | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2007.03496>`_ . | |
Args: | |
force_topk (bool): Used in center prior initialization to | |
handle extremely small gt. Default is False. | |
topk (int): The number of points used to calculate the | |
center prior when no point falls in gt_bbox. Only work when | |
force_topk if True. Defaults to 9. | |
pos_loss_weight (float): The loss weight of positive loss | |
and with default value 0.25. | |
neg_loss_weight (float): The loss weight of negative loss | |
and with default value 0.75. | |
center_loss_weight (float): The loss weight of center prior | |
loss and with default value 0.75. | |
""" | |
def __init__(self, | |
*args, | |
force_topk: bool = False, | |
topk: int = 9, | |
pos_loss_weight: float = 0.25, | |
neg_loss_weight: float = 0.75, | |
center_loss_weight: float = 0.75, | |
**kwargs) -> None: | |
super().__init__(*args, conv_bias=True, **kwargs) | |
self.center_prior = CenterPrior( | |
force_topk=force_topk, | |
topk=topk, | |
num_classes=self.num_classes, | |
strides=self.strides) | |
self.pos_loss_weight = pos_loss_weight | |
self.neg_loss_weight = neg_loss_weight | |
self.center_loss_weight = center_loss_weight | |
self.prior_generator = MlvlPointGenerator(self.strides, offset=0) | |
def init_weights(self) -> None: | |
"""Initialize weights of the head. | |
In particular, we have special initialization for classified conv's and | |
regression conv's bias | |
""" | |
super(AutoAssignHead, self).init_weights() | |
bias_cls = bias_init_with_prob(0.02) | |
normal_init(self.conv_cls, std=0.01, bias=bias_cls) | |
normal_init(self.conv_reg, std=0.01, bias=4.0) | |
def forward_single(self, x: Tensor, scale: Scale, | |
stride: int) -> Tuple[Tensor, Tensor, Tensor]: | |
"""Forward features of a single scale level. | |
Args: | |
x (Tensor): FPN feature maps of the specified stride. | |
scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
stride (int): The corresponding stride for feature maps, only | |
used to normalize the bbox prediction when self.norm_on_bbox | |
is True. | |
Returns: | |
tuple[Tensor, Tensor, Tensor]: scores for each class, bbox | |
predictions and centerness predictions of input feature maps. | |
""" | |
cls_score, bbox_pred, cls_feat, reg_feat = super( | |
FCOSHead, self).forward_single(x) | |
centerness = self.conv_centerness(reg_feat) | |
# scale the bbox_pred of different level | |
# float to avoid overflow when enabling FP16 | |
bbox_pred = scale(bbox_pred).float() | |
# bbox_pred needed for gradient computation has been modified | |
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace | |
# F.relu(bbox_pred) with bbox_pred.clamp(min=0) | |
bbox_pred = bbox_pred.clamp(min=0) | |
bbox_pred *= stride | |
return cls_score, bbox_pred, centerness | |
def get_pos_loss_single(self, cls_score: Tensor, objectness: Tensor, | |
reg_loss: Tensor, gt_instances: InstanceData, | |
center_prior_weights: Tensor) -> Tuple[Tensor]: | |
"""Calculate the positive loss of all points in gt_bboxes. | |
Args: | |
cls_score (Tensor): All category scores for each point on | |
the feature map. The shape is (num_points, num_class). | |
objectness (Tensor): Foreground probability of all points, | |
has shape (num_points, 1). | |
reg_loss (Tensor): The regression loss of each gt_bbox and each | |
prediction box, has shape of (num_points, num_gt). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
center_prior_weights (Tensor): Float tensor with shape | |
of (num_points, num_gt). Each value represents | |
the center weighting coefficient. | |
Returns: | |
tuple[Tensor]: | |
- pos_loss (Tensor): The positive loss of all points in the \ | |
gt_bboxes. | |
""" | |
gt_labels = gt_instances.labels | |
# p_loc: localization confidence | |
p_loc = torch.exp(-reg_loss) | |
# p_cls: classification confidence | |
p_cls = (cls_score * objectness)[:, gt_labels] | |
# p_pos: joint confidence indicator | |
p_pos = p_cls * p_loc | |
# 3 is a hyper-parameter to control the contributions of high and | |
# low confidence locations towards positive losses. | |
confidence_weight = torch.exp(p_pos * 3) | |
p_pos_weight = (confidence_weight * center_prior_weights) / ( | |
(confidence_weight * center_prior_weights).sum( | |
0, keepdim=True)).clamp(min=EPS) | |
reweighted_p_pos = (p_pos * p_pos_weight).sum(0) | |
pos_loss = F.binary_cross_entropy( | |
reweighted_p_pos, | |
torch.ones_like(reweighted_p_pos), | |
reduction='none') | |
pos_loss = pos_loss.sum() * self.pos_loss_weight | |
return pos_loss, | |
def get_neg_loss_single(self, cls_score: Tensor, objectness: Tensor, | |
gt_instances: InstanceData, ious: Tensor, | |
inside_gt_bbox_mask: Tensor) -> Tuple[Tensor]: | |
"""Calculate the negative loss of all points in feature map. | |
Args: | |
cls_score (Tensor): All category scores for each point on | |
the feature map. The shape is (num_points, num_class). | |
objectness (Tensor): Foreground probability of all points | |
and is shape of (num_points, 1). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
ious (Tensor): Float tensor with shape of (num_points, num_gt). | |
Each value represent the iou of pred_bbox and gt_bboxes. | |
inside_gt_bbox_mask (Tensor): Tensor of bool type, | |
with shape of (num_points, num_gt), each | |
value is used to mark whether this point falls | |
within a certain gt. | |
Returns: | |
tuple[Tensor]: | |
- neg_loss (Tensor): The negative loss of all points in the \ | |
feature map. | |
""" | |
gt_labels = gt_instances.labels | |
num_gts = len(gt_labels) | |
joint_conf = (cls_score * objectness) | |
p_neg_weight = torch.ones_like(joint_conf) | |
if num_gts > 0: | |
# the order of dinmension would affect the value of | |
# p_neg_weight, we strictly follow the original | |
# implementation. | |
inside_gt_bbox_mask = inside_gt_bbox_mask.permute(1, 0) | |
ious = ious.permute(1, 0) | |
foreground_idxs = torch.nonzero(inside_gt_bbox_mask, as_tuple=True) | |
temp_weight = (1 / (1 - ious[foreground_idxs]).clamp_(EPS)) | |
def normalize(x): | |
return (x - x.min() + EPS) / (x.max() - x.min() + EPS) | |
for instance_idx in range(num_gts): | |
idxs = foreground_idxs[0] == instance_idx | |
if idxs.any(): | |
temp_weight[idxs] = normalize(temp_weight[idxs]) | |
p_neg_weight[foreground_idxs[1], | |
gt_labels[foreground_idxs[0]]] = 1 - temp_weight | |
logits = (joint_conf * p_neg_weight) | |
neg_loss = ( | |
logits**2 * F.binary_cross_entropy( | |
logits, torch.zeros_like(logits), reduction='none')) | |
neg_loss = neg_loss.sum() * self.neg_loss_weight | |
return neg_loss, | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
objectnesses: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None | |
) -> Dict[str, Tensor]: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level, | |
each is a 4D-tensor, the channel number is | |
num_points * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_points * 4. | |
objectnesses (list[Tensor]): objectness for each scale level, each | |
is a 4D-tensor, the channel number is num_points * 1. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert len(cls_scores) == len(bbox_preds) == len(objectnesses) | |
all_num_gt = sum([len(item) for item in batch_gt_instances]) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
all_level_points = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=bbox_preds[0].dtype, | |
device=bbox_preds[0].device) | |
inside_gt_bbox_mask_list, bbox_targets_list = self.get_targets( | |
all_level_points, batch_gt_instances) | |
center_prior_weight_list = [] | |
temp_inside_gt_bbox_mask_list = [] | |
for gt_instances, inside_gt_bbox_mask in zip(batch_gt_instances, | |
inside_gt_bbox_mask_list): | |
center_prior_weight, inside_gt_bbox_mask = \ | |
self.center_prior(all_level_points, gt_instances, | |
inside_gt_bbox_mask) | |
center_prior_weight_list.append(center_prior_weight) | |
temp_inside_gt_bbox_mask_list.append(inside_gt_bbox_mask) | |
inside_gt_bbox_mask_list = temp_inside_gt_bbox_mask_list | |
mlvl_points = torch.cat(all_level_points, dim=0) | |
bbox_preds = levels_to_images(bbox_preds) | |
cls_scores = levels_to_images(cls_scores) | |
objectnesses = levels_to_images(objectnesses) | |
reg_loss_list = [] | |
ious_list = [] | |
num_points = len(mlvl_points) | |
for bbox_pred, encoded_targets, inside_gt_bbox_mask in zip( | |
bbox_preds, bbox_targets_list, inside_gt_bbox_mask_list): | |
temp_num_gt = encoded_targets.size(1) | |
expand_mlvl_points = mlvl_points[:, None, :].expand( | |
num_points, temp_num_gt, 2).reshape(-1, 2) | |
encoded_targets = encoded_targets.reshape(-1, 4) | |
expand_bbox_pred = bbox_pred[:, None, :].expand( | |
num_points, temp_num_gt, 4).reshape(-1, 4) | |
decoded_bbox_preds = self.bbox_coder.decode( | |
expand_mlvl_points, expand_bbox_pred) | |
decoded_target_preds = self.bbox_coder.decode( | |
expand_mlvl_points, encoded_targets) | |
with torch.no_grad(): | |
ious = bbox_overlaps( | |
decoded_bbox_preds, decoded_target_preds, is_aligned=True) | |
ious = ious.reshape(num_points, temp_num_gt) | |
if temp_num_gt: | |
ious = ious.max( | |
dim=-1, keepdim=True).values.repeat(1, temp_num_gt) | |
else: | |
ious = ious.new_zeros(num_points, temp_num_gt) | |
ious[~inside_gt_bbox_mask] = 0 | |
ious_list.append(ious) | |
loss_bbox = self.loss_bbox( | |
decoded_bbox_preds, | |
decoded_target_preds, | |
weight=None, | |
reduction_override='none') | |
reg_loss_list.append(loss_bbox.reshape(num_points, temp_num_gt)) | |
cls_scores = [item.sigmoid() for item in cls_scores] | |
objectnesses = [item.sigmoid() for item in objectnesses] | |
pos_loss_list, = multi_apply(self.get_pos_loss_single, cls_scores, | |
objectnesses, reg_loss_list, | |
batch_gt_instances, | |
center_prior_weight_list) | |
pos_avg_factor = reduce_mean( | |
bbox_pred.new_tensor(all_num_gt)).clamp_(min=1) | |
pos_loss = sum(pos_loss_list) / pos_avg_factor | |
neg_loss_list, = multi_apply(self.get_neg_loss_single, cls_scores, | |
objectnesses, batch_gt_instances, | |
ious_list, inside_gt_bbox_mask_list) | |
neg_avg_factor = sum(item.data.sum() | |
for item in center_prior_weight_list) | |
neg_avg_factor = reduce_mean(neg_avg_factor).clamp_(min=1) | |
neg_loss = sum(neg_loss_list) / neg_avg_factor | |
center_loss = [] | |
for i in range(len(batch_img_metas)): | |
if inside_gt_bbox_mask_list[i].any(): | |
center_loss.append( | |
len(batch_gt_instances[i]) / | |
center_prior_weight_list[i].sum().clamp_(min=EPS)) | |
# when width or height of gt_bbox is smaller than stride of p3 | |
else: | |
center_loss.append(center_prior_weight_list[i].sum() * 0) | |
center_loss = torch.stack(center_loss).mean() * self.center_loss_weight | |
# avoid dead lock in DDP | |
if all_num_gt == 0: | |
pos_loss = bbox_preds[0].sum() * 0 | |
dummy_center_prior_loss = self.center_prior.mean.sum( | |
) * 0 + self.center_prior.sigma.sum() * 0 | |
center_loss = objectnesses[0].sum() * 0 + dummy_center_prior_loss | |
loss = dict( | |
loss_pos=pos_loss, loss_neg=neg_loss, loss_center=center_loss) | |
return loss | |
def get_targets( | |
self, points: List[Tensor], batch_gt_instances: InstanceList | |
) -> Tuple[List[Tensor], List[Tensor]]: | |
"""Compute regression targets and each point inside or outside gt_bbox | |
in multiple images. | |
Args: | |
points (list[Tensor]): Points of all fpn level, each has shape | |
(num_points, 2). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
Returns: | |
tuple(list[Tensor], list[Tensor]): | |
- inside_gt_bbox_mask_list (list[Tensor]): Each Tensor is with \ | |
bool type and shape of (num_points, num_gt), each value is used \ | |
to mark whether this point falls within a certain gt. | |
- concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ | |
level. Each tensor has shape (num_points, num_gt, 4). | |
""" | |
concat_points = torch.cat(points, dim=0) | |
# the number of points per img, per lvl | |
inside_gt_bbox_mask_list, bbox_targets_list = multi_apply( | |
self._get_targets_single, batch_gt_instances, points=concat_points) | |
return inside_gt_bbox_mask_list, bbox_targets_list | |
def _get_targets_single(self, gt_instances: InstanceData, | |
points: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Compute regression targets and each point inside or outside gt_bbox | |
for a single image. | |
Args: | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
points (Tensor): Points of all fpn level, has shape | |
(num_points, 2). | |
Returns: | |
tuple[Tensor, Tensor]: Containing the following Tensors: | |
- inside_gt_bbox_mask (Tensor): Bool tensor with shape \ | |
(num_points, num_gt), each value is used to mark whether this \ | |
point falls within a certain gt. | |
- bbox_targets (Tensor): BBox targets of each points with each \ | |
gt_bboxes, has shape (num_points, num_gt, 4). | |
""" | |
gt_bboxes = gt_instances.bboxes | |
num_points = points.size(0) | |
num_gts = gt_bboxes.size(0) | |
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) | |
xs, ys = points[:, 0], points[:, 1] | |
xs = xs[:, None] | |
ys = ys[:, None] | |
left = xs - gt_bboxes[..., 0] | |
right = gt_bboxes[..., 2] - xs | |
top = ys - gt_bboxes[..., 1] | |
bottom = gt_bboxes[..., 3] - ys | |
bbox_targets = torch.stack((left, top, right, bottom), -1) | |
if num_gts: | |
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 | |
else: | |
inside_gt_bbox_mask = bbox_targets.new_zeros((num_points, num_gts), | |
dtype=torch.bool) | |
return inside_gt_bbox_mask, bbox_targets | |