KyanChen's picture
init
f549064
raw
history blame
33.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
from multiprocessing import Pool
import numpy as np
from mmengine.logging import print_log
from mmengine.utils import is_str
from terminaltables import AsciiTable
from .bbox_overlaps import bbox_overlaps
from .class_names import get_classes
def average_precision(recalls, precisions, mode='area'):
"""Calculate average precision (for single or multiple scales).
Args:
recalls (ndarray): shape (num_scales, num_dets) or (num_dets, )
precisions (ndarray): shape (num_scales, num_dets) or (num_dets, )
mode (str): 'area' or '11points', 'area' means calculating the area
under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1]
Returns:
float or ndarray: calculated average precision
"""
no_scale = False
if recalls.ndim == 1:
no_scale = True
recalls = recalls[np.newaxis, :]
precisions = precisions[np.newaxis, :]
assert recalls.shape == precisions.shape and recalls.ndim == 2
num_scales = recalls.shape[0]
ap = np.zeros(num_scales, dtype=np.float32)
if mode == 'area':
zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
ones = np.ones((num_scales, 1), dtype=recalls.dtype)
mrec = np.hstack((zeros, recalls, ones))
mpre = np.hstack((zeros, precisions, zeros))
for i in range(mpre.shape[1] - 1, 0, -1):
mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
for i in range(num_scales):
ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
ap[i] = np.sum(
(mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
elif mode == '11points':
for i in range(num_scales):
for thr in np.arange(0, 1 + 1e-3, 0.1):
precs = precisions[i, recalls[i, :] >= thr]
prec = precs.max() if precs.size > 0 else 0
ap[i] += prec
ap /= 11
else:
raise ValueError(
'Unrecognized mode, only "area" and "11points" are supported')
if no_scale:
ap = ap[0]
return ap
def tpfp_imagenet(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
default_iou_thr=0.5,
area_ranges=None,
use_legacy_coordinate=False,
**kwargs):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 4). Defaults to None
default_iou_thr (float): IoU threshold to be considered as matched for
medium and large bboxes (small ones have special rules).
Defaults to 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. Defaults to None.
use_legacy_coordinate (bool): Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
Defaults to False.
Returns:
tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
each array is (num_scales, m).
"""
if not use_legacy_coordinate:
extra_length = 0.
else:
extra_length = 1.
# an indicator of ignored gts
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0],
dtype=bool), np.ones(gt_bboxes_ignore.shape[0], dtype=bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp
# of a certain scale.
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (
det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
return tp, fp
ious = bbox_overlaps(
det_bboxes, gt_bboxes - 1, use_legacy_coordinate=use_legacy_coordinate)
gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length
gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length
iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)),
default_iou_thr)
# sort all detections by scores in descending order
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = gt_w * gt_h
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
max_iou = -1
matched_gt = -1
# find best overlapped available gt
for j in range(num_gts):
# different from PASCAL VOC: allow finding other gts if the
# best overlapped ones are already matched by other det bboxes
if gt_covered[j]:
continue
elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou:
max_iou = ious[i, j]
matched_gt = j
# there are 4 cases for a det bbox:
# 1. it matches a gt, tp = 1, fp = 0
# 2. it matches an ignored gt, tp = 0, fp = 0
# 3. it matches no gt and within area range, tp = 0, fp = 1
# 4. it matches no gt but is beyond area range, tp = 0, fp = 0
if matched_gt >= 0:
gt_covered[matched_gt] = 1
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
tp[k, i] = 1
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :4]
area = (bbox[2] - bbox[0] + extra_length) * (
bbox[3] - bbox[1] + extra_length)
if area >= min_area and area < max_area:
fp[k, i] = 1
return tp, fp
def tpfp_default(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
iou_thr=0.5,
area_ranges=None,
use_legacy_coordinate=False,
**kwargs):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 4). Defaults to None
iou_thr (float): IoU threshold to be considered as matched.
Defaults to 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be
evaluated, in the format [(min1, max1), (min2, max2), ...].
Defaults to None.
use_legacy_coordinate (bool): Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
Defaults to False.
Returns:
tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
each array is (num_scales, m).
"""
if not use_legacy_coordinate:
extra_length = 0.
else:
extra_length = 1.
# an indicator of ignored gts
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0],
dtype=bool), np.ones(gt_bboxes_ignore.shape[0], dtype=bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
# a certain scale
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)
# if there is no gt bboxes in this image, then all det bboxes
# within area range are false positives
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (
det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
return tp, fp
ious = bbox_overlaps(
det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate)
# for each det, the max iou with all gts
ious_max = ious.max(axis=1)
# for each det, which gt overlaps most with it
ious_argmax = ious.argmax(axis=1)
# sort all dets in descending order by scores
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * (
gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length)
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
if ious_max[i] >= iou_thr:
matched_gt = ious_argmax[i]
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
if not gt_covered[matched_gt]:
gt_covered[matched_gt] = True
tp[k, i] = 1
else:
fp[k, i] = 1
# otherwise ignore this detected bbox, tp = 0, fp = 0
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :4]
area = (bbox[2] - bbox[0] + extra_length) * (
bbox[3] - bbox[1] + extra_length)
if area >= min_area and area < max_area:
fp[k, i] = 1
return tp, fp
def tpfp_openimages(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
iou_thr=0.5,
area_ranges=None,
use_legacy_coordinate=False,
gt_bboxes_group_of=None,
use_group_of=True,
ioa_thr=0.5,
**kwargs):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 4). Defaults to None
iou_thr (float): IoU threshold to be considered as matched.
Defaults to 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be
evaluated, in the format [(min1, max1), (min2, max2), ...].
Defaults to None.
use_legacy_coordinate (bool): Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
Defaults to False.
gt_bboxes_group_of (ndarray): GT group_of of this image, of shape
(k, 1). Defaults to None
use_group_of (bool): Whether to use group of when calculate TP and FP,
which only used in OpenImages evaluation. Defaults to True.
ioa_thr (float | None): IoA threshold to be considered as matched,
which only used in OpenImages evaluation. Defaults to 0.5.
Returns:
tuple[np.ndarray]: Returns a tuple (tp, fp, det_bboxes), where
(tp, fp) whose elements are 0 and 1. The shape of each array is
(num_scales, m). (det_bboxes) whose will filter those are not
matched by group of gts when processing Open Images evaluation.
The shape is (num_scales, m).
"""
if not use_legacy_coordinate:
extra_length = 0.
else:
extra_length = 1.
# an indicator of ignored gts
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0],
dtype=bool), np.ones(gt_bboxes_ignore.shape[0], dtype=bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
# a certain scale
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)
# if there is no gt bboxes in this image, then all det bboxes
# within area range are false positives
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (
det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
return tp, fp, det_bboxes
if gt_bboxes_group_of is not None and use_group_of:
# if handle group-of boxes, divided gt boxes into two parts:
# non-group-of and group-of.Then calculate ious and ioas through
# non-group-of group-of gts respectively. This only used in
# OpenImages evaluation.
assert gt_bboxes_group_of.shape[0] == gt_bboxes.shape[0]
non_group_gt_bboxes = gt_bboxes[~gt_bboxes_group_of]
group_gt_bboxes = gt_bboxes[gt_bboxes_group_of]
num_gts_group = group_gt_bboxes.shape[0]
ious = bbox_overlaps(det_bboxes, non_group_gt_bboxes)
ioas = bbox_overlaps(det_bboxes, group_gt_bboxes, mode='iof')
else:
# if not consider group-of boxes, only calculate ious through gt boxes
ious = bbox_overlaps(
det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate)
ioas = None
if ious.shape[1] > 0:
# for each det, the max iou with all gts
ious_max = ious.max(axis=1)
# for each det, which gt overlaps most with it
ious_argmax = ious.argmax(axis=1)
# sort all dets in descending order by scores
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = (
gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * (
gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length)
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
if ious_max[i] >= iou_thr:
matched_gt = ious_argmax[i]
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
if not gt_covered[matched_gt]:
gt_covered[matched_gt] = True
tp[k, i] = 1
else:
fp[k, i] = 1
# otherwise ignore this detected bbox, tp = 0, fp = 0
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :4]
area = (bbox[2] - bbox[0] + extra_length) * (
bbox[3] - bbox[1] + extra_length)
if area >= min_area and area < max_area:
fp[k, i] = 1
else:
# if there is no no-group-of gt bboxes in this image,
# then all det bboxes within area range are false positives.
# Only used in OpenImages evaluation.
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (
det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
if ioas is None or ioas.shape[1] <= 0:
return tp, fp, det_bboxes
else:
# The evaluation of group-of TP and FP are done in two stages:
# 1. All detections are first matched to non group-of boxes; true
# positives are determined.
# 2. Detections that are determined as false positives are matched
# against group-of boxes and calculated group-of TP and FP.
# Only used in OpenImages evaluation.
det_bboxes_group = np.zeros(
(num_scales, ioas.shape[1], det_bboxes.shape[1]), dtype=float)
match_group_of = np.zeros((num_scales, num_dets), dtype=bool)
tp_group = np.zeros((num_scales, num_gts_group), dtype=np.float32)
ioas_max = ioas.max(axis=1)
# for each det, which gt overlaps most with it
ioas_argmax = ioas.argmax(axis=1)
# sort all dets in descending order by scores
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
box_is_covered = tp[k]
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
gt_bboxes[:, 3] - gt_bboxes[:, 1])
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
matched_gt = ioas_argmax[i]
if not box_is_covered[i]:
if ioas_max[i] >= ioa_thr:
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
if not tp_group[k, matched_gt]:
tp_group[k, matched_gt] = 1
match_group_of[k, i] = True
else:
match_group_of[k, i] = True
if det_bboxes_group[k, matched_gt, -1] < \
det_bboxes[i, -1]:
det_bboxes_group[k, matched_gt] = \
det_bboxes[i]
fp_group = (tp_group <= 0).astype(float)
tps = []
fps = []
# concatenate tp, fp, and det-boxes which not matched group of
# gt boxes and tp_group, fp_group, and det_bboxes_group which
# matched group of boxes respectively.
for i in range(num_scales):
tps.append(
np.concatenate((tp[i][~match_group_of[i]], tp_group[i])))
fps.append(
np.concatenate((fp[i][~match_group_of[i]], fp_group[i])))
det_bboxes = np.concatenate(
(det_bboxes[~match_group_of[i]], det_bboxes_group[i]))
tp = np.vstack(tps)
fp = np.vstack(fps)
return tp, fp, det_bboxes
def get_cls_results(det_results, annotations, class_id):
"""Get det results and gt information of a certain class.
Args:
det_results (list[list]): Same as `eval_map()`.
annotations (list[dict]): Same as `eval_map()`.
class_id (int): ID of a specific class.
Returns:
tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes
"""
cls_dets = [img_res[class_id] for img_res in det_results]
cls_gts = []
cls_gts_ignore = []
for ann in annotations:
gt_inds = ann['labels'] == class_id
cls_gts.append(ann['bboxes'][gt_inds, :])
if ann.get('labels_ignore', None) is not None:
ignore_inds = ann['labels_ignore'] == class_id
cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :])
else:
cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32))
return cls_dets, cls_gts, cls_gts_ignore
def get_cls_group_ofs(annotations, class_id):
"""Get `gt_group_of` of a certain class, which is used in Open Images.
Args:
annotations (list[dict]): Same as `eval_map()`.
class_id (int): ID of a specific class.
Returns:
list[np.ndarray]: `gt_group_of` of a certain class.
"""
gt_group_ofs = []
for ann in annotations:
gt_inds = ann['labels'] == class_id
if ann.get('gt_is_group_ofs', None) is not None:
gt_group_ofs.append(ann['gt_is_group_ofs'][gt_inds])
else:
gt_group_ofs.append(np.empty((0, 1), dtype=bool))
return gt_group_ofs
def eval_map(det_results,
annotations,
scale_ranges=None,
iou_thr=0.5,
ioa_thr=None,
dataset=None,
logger=None,
tpfp_fn=None,
nproc=4,
use_legacy_coordinate=False,
use_group_of=False,
eval_mode='area'):
"""Evaluate mAP of a dataset.
Args:
det_results (list[list]): [[cls1_det, cls2_det, ...], ...].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.
annotations (list[dict]): Ground truth annotations where each item of
the list indicates an image. Keys of annotations are:
- `bboxes`: numpy array of shape (n, 4)
- `labels`: numpy array of shape (n, )
- `bboxes_ignore` (optional): numpy array of shape (k, 4)
- `labels_ignore` (optional): numpy array of shape (k, )
scale_ranges (list[tuple] | None): Range of scales to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. A range of
(32, 64) means the area range between (32**2, 64**2).
Defaults to None.
iou_thr (float): IoU threshold to be considered as matched.
Defaults to 0.5.
ioa_thr (float | None): IoA threshold to be considered as matched,
which only used in OpenImages evaluation. Defaults to None.
dataset (list[str] | str | None): Dataset name or dataset classes,
there are minor differences in metrics for different datasets, e.g.
"voc", "imagenet_det", etc. Defaults to None.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmengine.logging.print_log()` for details.
Defaults to None.
tpfp_fn (callable | None): The function used to determine true/
false positives. If None, :func:`tpfp_default` is used as default
unless dataset is 'det' or 'vid' (:func:`tpfp_imagenet` in this
case). If it is given as a function, then this function is used
to evaluate tp & fp. Default None.
nproc (int): Processes used for computing TP and FP.
Defaults to 4.
use_legacy_coordinate (bool): Whether to use coordinate system in
mmdet v1.x. which means width, height should be
calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
Defaults to False.
use_group_of (bool): Whether to use group of when calculate TP and FP,
which only used in OpenImages evaluation. Defaults to False.
eval_mode (str): 'area' or '11points', 'area' means calculating the
area under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1],
PASCAL VOC2007 uses `11points` as default evaluate mode, while
others are 'area'. Defaults to 'area'.
Returns:
tuple: (mAP, [dict, dict, ...])
"""
assert len(det_results) == len(annotations)
assert eval_mode in ['area', '11points'], \
f'Unrecognized {eval_mode} mode, only "area" and "11points" ' \
'are supported'
if not use_legacy_coordinate:
extra_length = 0.
else:
extra_length = 1.
num_imgs = len(det_results)
num_scales = len(scale_ranges) if scale_ranges is not None else 1
num_classes = len(det_results[0]) # positive class num
area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges]
if scale_ranges is not None else None)
# There is no need to use multi processes to process
# when num_imgs = 1 .
if num_imgs > 1:
assert nproc > 0, 'nproc must be at least one.'
nproc = min(nproc, num_imgs)
pool = Pool(nproc)
eval_results = []
for i in range(num_classes):
# get gt and det bboxes of this class
cls_dets, cls_gts, cls_gts_ignore = get_cls_results(
det_results, annotations, i)
# choose proper function according to datasets to compute tp and fp
if tpfp_fn is None:
if dataset in ['det', 'vid']:
tpfp_fn = tpfp_imagenet
elif dataset in ['oid_challenge', 'oid_v6'] \
or use_group_of is True:
tpfp_fn = tpfp_openimages
else:
tpfp_fn = tpfp_default
if not callable(tpfp_fn):
raise ValueError(
f'tpfp_fn has to be a function or None, but got {tpfp_fn}')
if num_imgs > 1:
# compute tp and fp for each image with multiple processes
args = []
if use_group_of:
# used in Open Images Dataset evaluation
gt_group_ofs = get_cls_group_ofs(annotations, i)
args.append(gt_group_ofs)
args.append([use_group_of for _ in range(num_imgs)])
if ioa_thr is not None:
args.append([ioa_thr for _ in range(num_imgs)])
tpfp = pool.starmap(
tpfp_fn,
zip(cls_dets, cls_gts, cls_gts_ignore,
[iou_thr for _ in range(num_imgs)],
[area_ranges for _ in range(num_imgs)],
[use_legacy_coordinate for _ in range(num_imgs)], *args))
else:
tpfp = tpfp_fn(
cls_dets[0],
cls_gts[0],
cls_gts_ignore[0],
iou_thr,
area_ranges,
use_legacy_coordinate,
gt_bboxes_group_of=(get_cls_group_ofs(annotations, i)[0]
if use_group_of else None),
use_group_of=use_group_of,
ioa_thr=ioa_thr)
tpfp = [tpfp]
if use_group_of:
tp, fp, cls_dets = tuple(zip(*tpfp))
else:
tp, fp = tuple(zip(*tpfp))
# calculate gt number of each scale
# ignored gts or gts beyond the specific scale are not counted
num_gts = np.zeros(num_scales, dtype=int)
for j, bbox in enumerate(cls_gts):
if area_ranges is None:
num_gts[0] += bbox.shape[0]
else:
gt_areas = (bbox[:, 2] - bbox[:, 0] + extra_length) * (
bbox[:, 3] - bbox[:, 1] + extra_length)
for k, (min_area, max_area) in enumerate(area_ranges):
num_gts[k] += np.sum((gt_areas >= min_area)
& (gt_areas < max_area))
# sort all det bboxes by score, also sort tp and fp
cls_dets = np.vstack(cls_dets)
num_dets = cls_dets.shape[0]
sort_inds = np.argsort(-cls_dets[:, -1])
tp = np.hstack(tp)[:, sort_inds]
fp = np.hstack(fp)[:, sort_inds]
# calculate recall and precision with tp and fp
tp = np.cumsum(tp, axis=1)
fp = np.cumsum(fp, axis=1)
eps = np.finfo(np.float32).eps
recalls = tp / np.maximum(num_gts[:, np.newaxis], eps)
precisions = tp / np.maximum((tp + fp), eps)
# calculate AP
if scale_ranges is None:
recalls = recalls[0, :]
precisions = precisions[0, :]
num_gts = num_gts.item()
ap = average_precision(recalls, precisions, eval_mode)
eval_results.append({
'num_gts': num_gts,
'num_dets': num_dets,
'recall': recalls,
'precision': precisions,
'ap': ap
})
if num_imgs > 1:
pool.close()
if scale_ranges is not None:
# shape (num_classes, num_scales)
all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results])
all_num_gts = np.vstack(
[cls_result['num_gts'] for cls_result in eval_results])
mean_ap = []
for i in range(num_scales):
if np.any(all_num_gts[:, i] > 0):
mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean())
else:
mean_ap.append(0.0)
else:
aps = []
for cls_result in eval_results:
if cls_result['num_gts'] > 0:
aps.append(cls_result['ap'])
mean_ap = np.array(aps).mean().item() if aps else 0.0
print_map_summary(
mean_ap, eval_results, dataset, area_ranges, logger=logger)
return mean_ap, eval_results
def print_map_summary(mean_ap,
results,
dataset=None,
scale_ranges=None,
logger=None):
"""Print mAP and results of each class.
A table will be printed to show the gts/dets/recall/AP of each class and
the mAP.
Args:
mean_ap (float): Calculated from `eval_map()`.
results (list[dict]): Calculated from `eval_map()`.
dataset (list[str] | str | None): Dataset name or dataset classes.
scale_ranges (list[tuple] | None): Range of scales to be evaluated.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmengine.logging.print_log()` for details.
Defaults to None.
"""
if logger == 'silent':
return
if isinstance(results[0]['ap'], np.ndarray):
num_scales = len(results[0]['ap'])
else:
num_scales = 1
if scale_ranges is not None:
assert len(scale_ranges) == num_scales
num_classes = len(results)
recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
aps = np.zeros((num_scales, num_classes), dtype=np.float32)
num_gts = np.zeros((num_scales, num_classes), dtype=int)
for i, cls_result in enumerate(results):
if cls_result['recall'].size > 0:
recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
aps[:, i] = cls_result['ap']
num_gts[:, i] = cls_result['num_gts']
if dataset is None:
label_names = [str(i) for i in range(num_classes)]
elif is_str(dataset):
label_names = get_classes(dataset)
else:
label_names = dataset
if not isinstance(mean_ap, list):
mean_ap = [mean_ap]
header = ['class', 'gts', 'dets', 'recall', 'ap']
for i in range(num_scales):
if scale_ranges is not None:
print_log(f'Scale range {scale_ranges[i]}', logger=logger)
table_data = [header]
for j in range(num_classes):
row_data = [
label_names[j], num_gts[i, j], results[j]['num_dets'],
f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}'
]
table_data.append(row_data)
table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}'])
table = AsciiTable(table_data)
table.inner_footing_row_border = True
print_log('\n' + table.table, logger=logger)