KyanChen's picture
init
f549064
raw
history blame
14.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn.functional as F
from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import HorizontalBoxes, bbox_rescale, get_box_tensor
from .base_bbox_coder import BaseBBoxCoder
@TASK_UTILS.register_module()
class BucketingBBoxCoder(BaseBBoxCoder):
"""Bucketing BBox Coder for Side-Aware Boundary Localization (SABL).
Boundary Localization with Bucketing and Bucketing Guided Rescoring
are implemented here.
Please refer to https://arxiv.org/abs/1912.04260 for more details.
Args:
num_buckets (int): Number of buckets.
scale_factor (int): Scale factor of proposals to generate buckets.
offset_topk (int): Topk buckets are used to generate
bucket fine regression targets. Defaults to 2.
offset_upperbound (float): Offset upperbound to generate
bucket fine regression targets.
To avoid too large offset displacements. Defaults to 1.0.
cls_ignore_neighbor (bool): Ignore second nearest bucket or Not.
Defaults to True.
clip_border (bool, optional): Whether clip the objects outside the
border of the image. Defaults to True.
"""
def __init__(self,
num_buckets,
scale_factor,
offset_topk=2,
offset_upperbound=1.0,
cls_ignore_neighbor=True,
clip_border=True,
**kwargs):
super().__init__(**kwargs)
self.num_buckets = num_buckets
self.scale_factor = scale_factor
self.offset_topk = offset_topk
self.offset_upperbound = offset_upperbound
self.cls_ignore_neighbor = cls_ignore_neighbor
self.clip_border = clip_border
def encode(self, bboxes, gt_bboxes):
"""Get bucketing estimation and fine regression targets during
training.
Args:
bboxes (torch.Tensor or :obj:`BaseBoxes`): source boxes,
e.g., object proposals.
gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): target of the
transformation, e.g., ground truth boxes.
Returns:
encoded_bboxes(tuple[Tensor]): bucketing estimation
and fine regression targets and weights
"""
bboxes = get_box_tensor(bboxes)
gt_bboxes = get_box_tensor(gt_bboxes)
assert bboxes.size(0) == gt_bboxes.size(0)
assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
encoded_bboxes = bbox2bucket(bboxes, gt_bboxes, self.num_buckets,
self.scale_factor, self.offset_topk,
self.offset_upperbound,
self.cls_ignore_neighbor)
return encoded_bboxes
def decode(self, bboxes, pred_bboxes, max_shape=None):
"""Apply transformation `pred_bboxes` to `boxes`.
Args:
boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes.
pred_bboxes (torch.Tensor): Predictions for bucketing estimation
and fine regression
max_shape (tuple[int], optional): Maximum shape of boxes.
Defaults to None.
Returns:
Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes.
"""
bboxes = get_box_tensor(bboxes)
assert len(pred_bboxes) == 2
cls_preds, offset_preds = pred_bboxes
assert cls_preds.size(0) == bboxes.size(0) and offset_preds.size(
0) == bboxes.size(0)
bboxes, loc_confidence = bucket2bbox(bboxes, cls_preds, offset_preds,
self.num_buckets,
self.scale_factor, max_shape,
self.clip_border)
if self.use_box_type:
bboxes = HorizontalBoxes(bboxes, clone=False)
return bboxes, loc_confidence
def generat_buckets(proposals, num_buckets, scale_factor=1.0):
"""Generate buckets w.r.t bucket number and scale factor of proposals.
Args:
proposals (Tensor): Shape (n, 4)
num_buckets (int): Number of buckets.
scale_factor (float): Scale factor to rescale proposals.
Returns:
tuple[Tensor]: (bucket_w, bucket_h, l_buckets, r_buckets,
t_buckets, d_buckets)
- bucket_w: Width of buckets on x-axis. Shape (n, ).
- bucket_h: Height of buckets on y-axis. Shape (n, ).
- l_buckets: Left buckets. Shape (n, ceil(side_num/2)).
- r_buckets: Right buckets. Shape (n, ceil(side_num/2)).
- t_buckets: Top buckets. Shape (n, ceil(side_num/2)).
- d_buckets: Down buckets. Shape (n, ceil(side_num/2)).
"""
proposals = bbox_rescale(proposals, scale_factor)
# number of buckets in each side
side_num = int(np.ceil(num_buckets / 2.0))
pw = proposals[..., 2] - proposals[..., 0]
ph = proposals[..., 3] - proposals[..., 1]
px1 = proposals[..., 0]
py1 = proposals[..., 1]
px2 = proposals[..., 2]
py2 = proposals[..., 3]
bucket_w = pw / num_buckets
bucket_h = ph / num_buckets
# left buckets
l_buckets = px1[:, None] + (0.5 + torch.arange(
0, side_num).to(proposals).float())[None, :] * bucket_w[:, None]
# right buckets
r_buckets = px2[:, None] - (0.5 + torch.arange(
0, side_num).to(proposals).float())[None, :] * bucket_w[:, None]
# top buckets
t_buckets = py1[:, None] + (0.5 + torch.arange(
0, side_num).to(proposals).float())[None, :] * bucket_h[:, None]
# down buckets
d_buckets = py2[:, None] - (0.5 + torch.arange(
0, side_num).to(proposals).float())[None, :] * bucket_h[:, None]
return bucket_w, bucket_h, l_buckets, r_buckets, t_buckets, d_buckets
def bbox2bucket(proposals,
gt,
num_buckets,
scale_factor,
offset_topk=2,
offset_upperbound=1.0,
cls_ignore_neighbor=True):
"""Generate buckets estimation and fine regression targets.
Args:
proposals (Tensor): Shape (n, 4)
gt (Tensor): Shape (n, 4)
num_buckets (int): Number of buckets.
scale_factor (float): Scale factor to rescale proposals.
offset_topk (int): Topk buckets are used to generate
bucket fine regression targets. Defaults to 2.
offset_upperbound (float): Offset allowance to generate
bucket fine regression targets.
To avoid too large offset displacements. Defaults to 1.0.
cls_ignore_neighbor (bool): Ignore second nearest bucket or Not.
Defaults to True.
Returns:
tuple[Tensor]: (offsets, offsets_weights, bucket_labels, cls_weights).
- offsets: Fine regression targets. \
Shape (n, num_buckets*2).
- offsets_weights: Fine regression weights. \
Shape (n, num_buckets*2).
- bucket_labels: Bucketing estimation labels. \
Shape (n, num_buckets*2).
- cls_weights: Bucketing estimation weights. \
Shape (n, num_buckets*2).
"""
assert proposals.size() == gt.size()
# generate buckets
proposals = proposals.float()
gt = gt.float()
(bucket_w, bucket_h, l_buckets, r_buckets, t_buckets,
d_buckets) = generat_buckets(proposals, num_buckets, scale_factor)
gx1 = gt[..., 0]
gy1 = gt[..., 1]
gx2 = gt[..., 2]
gy2 = gt[..., 3]
# generate offset targets and weights
# offsets from buckets to gts
l_offsets = (l_buckets - gx1[:, None]) / bucket_w[:, None]
r_offsets = (r_buckets - gx2[:, None]) / bucket_w[:, None]
t_offsets = (t_buckets - gy1[:, None]) / bucket_h[:, None]
d_offsets = (d_buckets - gy2[:, None]) / bucket_h[:, None]
# select top-k nearest buckets
l_topk, l_label = l_offsets.abs().topk(
offset_topk, dim=1, largest=False, sorted=True)
r_topk, r_label = r_offsets.abs().topk(
offset_topk, dim=1, largest=False, sorted=True)
t_topk, t_label = t_offsets.abs().topk(
offset_topk, dim=1, largest=False, sorted=True)
d_topk, d_label = d_offsets.abs().topk(
offset_topk, dim=1, largest=False, sorted=True)
offset_l_weights = l_offsets.new_zeros(l_offsets.size())
offset_r_weights = r_offsets.new_zeros(r_offsets.size())
offset_t_weights = t_offsets.new_zeros(t_offsets.size())
offset_d_weights = d_offsets.new_zeros(d_offsets.size())
inds = torch.arange(0, proposals.size(0)).to(proposals).long()
# generate offset weights of top-k nearest buckets
for k in range(offset_topk):
if k >= 1:
offset_l_weights[inds, l_label[:,
k]] = (l_topk[:, k] <
offset_upperbound).float()
offset_r_weights[inds, r_label[:,
k]] = (r_topk[:, k] <
offset_upperbound).float()
offset_t_weights[inds, t_label[:,
k]] = (t_topk[:, k] <
offset_upperbound).float()
offset_d_weights[inds, d_label[:,
k]] = (d_topk[:, k] <
offset_upperbound).float()
else:
offset_l_weights[inds, l_label[:, k]] = 1.0
offset_r_weights[inds, r_label[:, k]] = 1.0
offset_t_weights[inds, t_label[:, k]] = 1.0
offset_d_weights[inds, d_label[:, k]] = 1.0
offsets = torch.cat([l_offsets, r_offsets, t_offsets, d_offsets], dim=-1)
offsets_weights = torch.cat([
offset_l_weights, offset_r_weights, offset_t_weights, offset_d_weights
],
dim=-1)
# generate bucket labels and weight
side_num = int(np.ceil(num_buckets / 2.0))
labels = torch.stack(
[l_label[:, 0], r_label[:, 0], t_label[:, 0], d_label[:, 0]], dim=-1)
batch_size = labels.size(0)
bucket_labels = F.one_hot(labels.view(-1), side_num).view(batch_size,
-1).float()
bucket_cls_l_weights = (l_offsets.abs() < 1).float()
bucket_cls_r_weights = (r_offsets.abs() < 1).float()
bucket_cls_t_weights = (t_offsets.abs() < 1).float()
bucket_cls_d_weights = (d_offsets.abs() < 1).float()
bucket_cls_weights = torch.cat([
bucket_cls_l_weights, bucket_cls_r_weights, bucket_cls_t_weights,
bucket_cls_d_weights
],
dim=-1)
# ignore second nearest buckets for cls if necessary
if cls_ignore_neighbor:
bucket_cls_weights = (~((bucket_cls_weights == 1) &
(bucket_labels == 0))).float()
else:
bucket_cls_weights[:] = 1.0
return offsets, offsets_weights, bucket_labels, bucket_cls_weights
def bucket2bbox(proposals,
cls_preds,
offset_preds,
num_buckets,
scale_factor=1.0,
max_shape=None,
clip_border=True):
"""Apply bucketing estimation (cls preds) and fine regression (offset
preds) to generate det bboxes.
Args:
proposals (Tensor): Boxes to be transformed. Shape (n, 4)
cls_preds (Tensor): bucketing estimation. Shape (n, num_buckets*2).
offset_preds (Tensor): fine regression. Shape (n, num_buckets*2).
num_buckets (int): Number of buckets.
scale_factor (float): Scale factor to rescale proposals.
max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W)
clip_border (bool, optional): Whether clip the objects outside the
border of the image. Defaults to True.
Returns:
tuple[Tensor]: (bboxes, loc_confidence).
- bboxes: predicted bboxes. Shape (n, 4)
- loc_confidence: localization confidence of predicted bboxes.
Shape (n,).
"""
side_num = int(np.ceil(num_buckets / 2.0))
cls_preds = cls_preds.view(-1, side_num)
offset_preds = offset_preds.view(-1, side_num)
scores = F.softmax(cls_preds, dim=1)
score_topk, score_label = scores.topk(2, dim=1, largest=True, sorted=True)
rescaled_proposals = bbox_rescale(proposals, scale_factor)
pw = rescaled_proposals[..., 2] - rescaled_proposals[..., 0]
ph = rescaled_proposals[..., 3] - rescaled_proposals[..., 1]
px1 = rescaled_proposals[..., 0]
py1 = rescaled_proposals[..., 1]
px2 = rescaled_proposals[..., 2]
py2 = rescaled_proposals[..., 3]
bucket_w = pw / num_buckets
bucket_h = ph / num_buckets
score_inds_l = score_label[0::4, 0]
score_inds_r = score_label[1::4, 0]
score_inds_t = score_label[2::4, 0]
score_inds_d = score_label[3::4, 0]
l_buckets = px1 + (0.5 + score_inds_l.float()) * bucket_w
r_buckets = px2 - (0.5 + score_inds_r.float()) * bucket_w
t_buckets = py1 + (0.5 + score_inds_t.float()) * bucket_h
d_buckets = py2 - (0.5 + score_inds_d.float()) * bucket_h
offsets = offset_preds.view(-1, 4, side_num)
inds = torch.arange(proposals.size(0)).to(proposals).long()
l_offsets = offsets[:, 0, :][inds, score_inds_l]
r_offsets = offsets[:, 1, :][inds, score_inds_r]
t_offsets = offsets[:, 2, :][inds, score_inds_t]
d_offsets = offsets[:, 3, :][inds, score_inds_d]
x1 = l_buckets - l_offsets * bucket_w
x2 = r_buckets - r_offsets * bucket_w
y1 = t_buckets - t_offsets * bucket_h
y2 = d_buckets - d_offsets * bucket_h
if clip_border and max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1] - 1)
y1 = y1.clamp(min=0, max=max_shape[0] - 1)
x2 = x2.clamp(min=0, max=max_shape[1] - 1)
y2 = y2.clamp(min=0, max=max_shape[0] - 1)
bboxes = torch.cat([x1[:, None], y1[:, None], x2[:, None], y2[:, None]],
dim=-1)
# bucketing guided rescoring
loc_confidence = score_topk[:, 0]
top2_neighbor_inds = (score_label[:, 0] - score_label[:, 1]).abs() == 1
loc_confidence += score_topk[:, 1] * top2_neighbor_inds.float()
loc_confidence = loc_confidence.view(-1, 4).mean(dim=1)
return bboxes, loc_confidence