Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmengine.model import ModuleList | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig | |
from ..layers import ConvUpsample | |
from ..utils import interpolate_as | |
from .base_semantic_head import BaseSemanticHead | |
class PanopticFPNHead(BaseSemanticHead): | |
"""PanopticFPNHead used in Panoptic FPN. | |
In this head, the number of output channels is ``num_stuff_classes | |
+ 1``, including all stuff classes and one thing class. The stuff | |
classes will be reset from ``0`` to ``num_stuff_classes - 1``, the | |
thing classes will be merged to ``num_stuff_classes``-th channel. | |
Arg: | |
num_things_classes (int): Number of thing classes. Default: 80. | |
num_stuff_classes (int): Number of stuff classes. Default: 53. | |
in_channels (int): Number of channels in the input feature | |
map. | |
inner_channels (int): Number of channels in inner features. | |
start_level (int): The start level of the input features | |
used in PanopticFPN. | |
end_level (int): The end level of the used features, the | |
``end_level``-th layer will not be used. | |
conv_cfg (Optional[Union[ConfigDict, dict]]): Dictionary to construct | |
and config conv layer. | |
norm_cfg (Union[ConfigDict, dict]): Dictionary to construct and config | |
norm layer. Use ``GN`` by default. | |
init_cfg (Optional[Union[ConfigDict, dict]]): Initialization config | |
dict. | |
loss_seg (Union[ConfigDict, dict]): the loss of the semantic head. | |
""" | |
def __init__(self, | |
num_things_classes: int = 80, | |
num_stuff_classes: int = 53, | |
in_channels: int = 256, | |
inner_channels: int = 128, | |
start_level: int = 0, | |
end_level: int = 4, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: ConfigType = dict( | |
type='GN', num_groups=32, requires_grad=True), | |
loss_seg: ConfigType = dict( | |
type='CrossEntropyLoss', ignore_index=-1, | |
loss_weight=1.0), | |
init_cfg: OptMultiConfig = None) -> None: | |
seg_rescale_factor = 1 / 2**(start_level + 2) | |
super().__init__( | |
num_classes=num_stuff_classes + 1, | |
seg_rescale_factor=seg_rescale_factor, | |
loss_seg=loss_seg, | |
init_cfg=init_cfg) | |
self.num_things_classes = num_things_classes | |
self.num_stuff_classes = num_stuff_classes | |
# Used feature layers are [start_level, end_level) | |
self.start_level = start_level | |
self.end_level = end_level | |
self.num_stages = end_level - start_level | |
self.inner_channels = inner_channels | |
self.conv_upsample_layers = ModuleList() | |
for i in range(start_level, end_level): | |
self.conv_upsample_layers.append( | |
ConvUpsample( | |
in_channels, | |
inner_channels, | |
num_layers=i if i > 0 else 1, | |
num_upsample=i if i > 0 else 0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
)) | |
self.conv_logits = nn.Conv2d(inner_channels, self.num_classes, 1) | |
def _set_things_to_void(self, gt_semantic_seg: Tensor) -> Tensor: | |
"""Merge thing classes to one class. | |
In PanopticFPN, the background labels will be reset from `0` to | |
`self.num_stuff_classes-1`, the foreground labels will be merged to | |
`self.num_stuff_classes`-th channel. | |
""" | |
gt_semantic_seg = gt_semantic_seg.int() | |
fg_mask = gt_semantic_seg < self.num_things_classes | |
bg_mask = (gt_semantic_seg >= self.num_things_classes) * ( | |
gt_semantic_seg < self.num_things_classes + self.num_stuff_classes) | |
new_gt_seg = torch.clone(gt_semantic_seg) | |
new_gt_seg = torch.where(bg_mask, | |
gt_semantic_seg - self.num_things_classes, | |
new_gt_seg) | |
new_gt_seg = torch.where(fg_mask, | |
fg_mask.int() * self.num_stuff_classes, | |
new_gt_seg) | |
return new_gt_seg | |
def loss(self, x: Union[Tensor, Tuple[Tensor]], | |
batch_data_samples: SampleList) -> Dict[str, Tensor]: | |
""" | |
Args: | |
x (Union[Tensor, Tuple[Tensor]]): Feature maps. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
Dict[str, Tensor]: The loss of semantic head. | |
""" | |
seg_preds = self(x)['seg_preds'] | |
gt_semantic_segs = [ | |
data_sample.gt_sem_seg.sem_seg | |
for data_sample in batch_data_samples | |
] | |
gt_semantic_segs = torch.stack(gt_semantic_segs) | |
if self.seg_rescale_factor != 1.0: | |
gt_semantic_segs = F.interpolate( | |
gt_semantic_segs.float(), | |
scale_factor=self.seg_rescale_factor, | |
mode='nearest').squeeze(1) | |
# Things classes will be merged to one class in PanopticFPN. | |
gt_semantic_segs = self._set_things_to_void(gt_semantic_segs) | |
if seg_preds.shape[-2:] != gt_semantic_segs.shape[-2:]: | |
seg_preds = interpolate_as(seg_preds, gt_semantic_segs) | |
seg_preds = seg_preds.permute((0, 2, 3, 1)) | |
loss_seg = self.loss_seg( | |
seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] | |
gt_semantic_segs.reshape(-1).long()) | |
return dict(loss_seg=loss_seg) | |
def init_weights(self) -> None: | |
"""Initialize weights.""" | |
super().init_weights() | |
nn.init.normal_(self.conv_logits.weight.data, 0, 0.01) | |
self.conv_logits.bias.data.zero_() | |
def forward(self, x: Tuple[Tensor]) -> Dict[str, Tensor]: | |
"""Forward. | |
Args: | |
x (Tuple[Tensor]): Multi scale Feature maps. | |
Returns: | |
dict[str, Tensor]: semantic segmentation predictions and | |
feature maps. | |
""" | |
# the number of subnets must be not more than | |
# the length of features. | |
assert self.num_stages <= len(x) | |
feats = [] | |
for i, layer in enumerate(self.conv_upsample_layers): | |
f = layer(x[self.start_level + i]) | |
feats.append(f) | |
seg_feats = torch.sum(torch.stack(feats, dim=0), dim=0) | |
seg_preds = self.conv_logits(seg_feats) | |
out = dict(seg_preds=seg_preds, seg_feats=seg_feats) | |
return out | |