Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py # noqa | |
from typing import List, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point | |
from mmengine.model import BaseModule | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.models.task_modules.samplers import SamplingResult | |
from mmdet.models.utils import (get_uncertain_point_coords_with_randomness, | |
get_uncertainty) | |
from mmdet.registry import MODELS | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType | |
class MaskPointHead(BaseModule): | |
"""A mask point head use in PointRend. | |
``MaskPointHead`` use shared multi-layer perceptron (equivalent to | |
nn.Conv1d) to predict the logit of input points. The fine-grained feature | |
and coarse feature will be concatenate together for predication. | |
Args: | |
num_fcs (int): Number of fc layers in the head. Defaults to 3. | |
in_channels (int): Number of input channels. Defaults to 256. | |
fc_channels (int): Number of fc channels. Defaults to 256. | |
num_classes (int): Number of classes for logits. Defaults to 80. | |
class_agnostic (bool): Whether use class agnostic classification. | |
If so, the output channels of logits will be 1. Defaults to False. | |
coarse_pred_each_layer (bool): Whether concatenate coarse feature with | |
the output of each fc layer. Defaults to True. | |
conv_cfg (:obj:`ConfigDict` or dict): Dictionary to construct | |
and config conv layer. Defaults to dict(type='Conv1d')). | |
norm_cfg (:obj:`ConfigDict` or dict, optional): Dictionary to construct | |
and config norm layer. Defaults to None. | |
loss_point (:obj:`ConfigDict` or dict): Dictionary to construct and | |
config loss layer of point head. Defaults to | |
dict(type='CrossEntropyLoss', use_mask=True, loss_weight=1.0). | |
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
num_classes: int, | |
num_fcs: int = 3, | |
in_channels: int = 256, | |
fc_channels: int = 256, | |
class_agnostic: bool = False, | |
coarse_pred_each_layer: bool = True, | |
conv_cfg: ConfigType = dict(type='Conv1d'), | |
norm_cfg: OptConfigType = None, | |
act_cfg: ConfigType = dict(type='ReLU'), | |
loss_point: ConfigType = dict( | |
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0), | |
init_cfg: MultiConfig = dict( | |
type='Normal', std=0.001, override=dict(name='fc_logits')) | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.num_fcs = num_fcs | |
self.in_channels = in_channels | |
self.fc_channels = fc_channels | |
self.num_classes = num_classes | |
self.class_agnostic = class_agnostic | |
self.coarse_pred_each_layer = coarse_pred_each_layer | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.loss_point = MODELS.build(loss_point) | |
fc_in_channels = in_channels + num_classes | |
self.fcs = nn.ModuleList() | |
for _ in range(num_fcs): | |
fc = ConvModule( | |
fc_in_channels, | |
fc_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.fcs.append(fc) | |
fc_in_channels = fc_channels | |
fc_in_channels += num_classes if self.coarse_pred_each_layer else 0 | |
out_channels = 1 if self.class_agnostic else self.num_classes | |
self.fc_logits = nn.Conv1d( | |
fc_in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, fine_grained_feats: Tensor, | |
coarse_feats: Tensor) -> Tensor: | |
"""Classify each point base on fine grained and coarse feats. | |
Args: | |
fine_grained_feats (Tensor): Fine grained feature sampled from FPN, | |
shape (num_rois, in_channels, num_points). | |
coarse_feats (Tensor): Coarse feature sampled from CoarseMaskHead, | |
shape (num_rois, num_classes, num_points). | |
Returns: | |
Tensor: Point classification results, | |
shape (num_rois, num_class, num_points). | |
""" | |
x = torch.cat([fine_grained_feats, coarse_feats], dim=1) | |
for fc in self.fcs: | |
x = fc(x) | |
if self.coarse_pred_each_layer: | |
x = torch.cat((x, coarse_feats), dim=1) | |
return self.fc_logits(x) | |
def get_targets(self, rois: Tensor, rel_roi_points: Tensor, | |
sampling_results: List[SamplingResult], | |
batch_gt_instances: InstanceList, | |
cfg: ConfigType) -> Tensor: | |
"""Get training targets of MaskPointHead for all images. | |
Args: | |
rois (Tensor): Region of Interest, shape (num_rois, 5). | |
rel_roi_points (Tensor): Points coordinates relative to RoI, shape | |
(num_rois, num_points, 2). | |
sampling_results (:obj:`SamplingResult`): Sampling result after | |
sampling and assignment. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes``, ``labels``, and | |
``masks`` attributes. | |
cfg (obj:`ConfigDict` or dict): Training cfg. | |
Returns: | |
Tensor: Point target, shape (num_rois, num_points). | |
""" | |
num_imgs = len(sampling_results) | |
rois_list = [] | |
rel_roi_points_list = [] | |
for batch_ind in range(num_imgs): | |
inds = (rois[:, 0] == batch_ind) | |
rois_list.append(rois[inds]) | |
rel_roi_points_list.append(rel_roi_points[inds]) | |
pos_assigned_gt_inds_list = [ | |
res.pos_assigned_gt_inds for res in sampling_results | |
] | |
cfg_list = [cfg for _ in range(num_imgs)] | |
point_targets = map(self._get_targets_single, rois_list, | |
rel_roi_points_list, pos_assigned_gt_inds_list, | |
batch_gt_instances, cfg_list) | |
point_targets = list(point_targets) | |
if len(point_targets) > 0: | |
point_targets = torch.cat(point_targets) | |
return point_targets | |
def _get_targets_single(self, rois: Tensor, rel_roi_points: Tensor, | |
pos_assigned_gt_inds: Tensor, | |
gt_instances: InstanceData, | |
cfg: ConfigType) -> Tensor: | |
"""Get training target of MaskPointHead for each image.""" | |
num_pos = rois.size(0) | |
num_points = cfg.num_points | |
if num_pos > 0: | |
gt_masks_th = ( | |
gt_instances.masks.to_tensor(rois.dtype, | |
rois.device).index_select( | |
0, pos_assigned_gt_inds)) | |
gt_masks_th = gt_masks_th.unsqueeze(1) | |
rel_img_points = rel_roi_point_to_rel_img_point( | |
rois, rel_roi_points, gt_masks_th) | |
point_targets = point_sample(gt_masks_th, | |
rel_img_points).squeeze(1) | |
else: | |
point_targets = rois.new_zeros((0, num_points)) | |
return point_targets | |
def loss_and_target(self, point_pred: Tensor, rel_roi_points: Tensor, | |
sampling_results: List[SamplingResult], | |
batch_gt_instances: InstanceList, | |
cfg: ConfigType) -> dict: | |
"""Calculate loss for MaskPointHead. | |
Args: | |
point_pred (Tensor): Point predication result, shape | |
(num_rois, num_classes, num_points). | |
rel_roi_points (Tensor): Points coordinates relative to RoI, shape | |
(num_rois, num_points, 2). | |
sampling_results (:obj:`SamplingResult`): Sampling result after | |
sampling and assignment. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes``, ``labels``, and | |
``masks`` attributes. | |
cfg (obj:`ConfigDict` or dict): Training cfg. | |
Returns: | |
dict: a dictionary of point loss and point target. | |
""" | |
rois = bbox2roi([res.pos_bboxes for res in sampling_results]) | |
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) | |
point_target = self.get_targets(rois, rel_roi_points, sampling_results, | |
batch_gt_instances, cfg) | |
if self.class_agnostic: | |
loss_point = self.loss_point(point_pred, point_target, | |
torch.zeros_like(pos_labels)) | |
else: | |
loss_point = self.loss_point(point_pred, point_target, pos_labels) | |
return dict(loss_point=loss_point, point_target=point_target) | |
def get_roi_rel_points_train(self, mask_preds: Tensor, labels: Tensor, | |
cfg: ConfigType) -> Tensor: | |
"""Get ``num_points`` most uncertain points with random points during | |
train. | |
Sample points in [0, 1] x [0, 1] coordinate space based on their | |
uncertainty. The uncertainties are calculated for each point using | |
'_get_uncertainty()' function that takes point's logit prediction as | |
input. | |
Args: | |
mask_preds (Tensor): A tensor of shape (num_rois, num_classes, | |
mask_height, mask_width) for class-specific or class-agnostic | |
prediction. | |
labels (Tensor): The ground truth class for each instance. | |
cfg (:obj:`ConfigDict` or dict): Training config of point head. | |
Returns: | |
point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) | |
that contains the coordinates sampled points. | |
""" | |
point_coords = get_uncertain_point_coords_with_randomness( | |
mask_preds, labels, cfg.num_points, cfg.oversample_ratio, | |
cfg.importance_sample_ratio) | |
return point_coords | |
def get_roi_rel_points_test(self, mask_preds: Tensor, label_preds: Tensor, | |
cfg: ConfigType) -> Tuple[Tensor, Tensor]: | |
"""Get ``num_points`` most uncertain points during test. | |
Args: | |
mask_preds (Tensor): A tensor of shape (num_rois, num_classes, | |
mask_height, mask_width) for class-specific or class-agnostic | |
prediction. | |
label_preds (Tensor): The predication class for each instance. | |
cfg (:obj:`ConfigDict` or dict): Testing config of point head. | |
Returns: | |
tuple: | |
- point_indices (Tensor): A tensor of shape (num_rois, num_points) | |
that contains indices from [0, mask_height x mask_width) of the | |
most uncertain points. | |
- point_coords (Tensor): A tensor of shape (num_rois, num_points, | |
2) that contains [0, 1] x [0, 1] normalized coordinates of the | |
most uncertain points from the [mask_height, mask_width] grid. | |
""" | |
num_points = cfg.subdivision_num_points | |
uncertainty_map = get_uncertainty(mask_preds, label_preds) | |
num_rois, _, mask_height, mask_width = uncertainty_map.shape | |
# During ONNX exporting, the type of each elements of 'shape' is | |
# `Tensor(float)`, while it is `float` during PyTorch inference. | |
if isinstance(mask_height, torch.Tensor): | |
h_step = 1.0 / mask_height.float() | |
w_step = 1.0 / mask_width.float() | |
else: | |
h_step = 1.0 / mask_height | |
w_step = 1.0 / mask_width | |
# cast to int to avoid dynamic K for TopK op in ONNX | |
mask_size = int(mask_height * mask_width) | |
uncertainty_map = uncertainty_map.view(num_rois, mask_size) | |
num_points = min(mask_size, num_points) | |
point_indices = uncertainty_map.topk(num_points, dim=1)[1] | |
xs = w_step / 2.0 + (point_indices % mask_width).float() * w_step | |
ys = h_step / 2.0 + (point_indices // mask_width).float() * h_step | |
point_coords = torch.stack([xs, ys], dim=2) | |
return point_indices, point_coords | |