KyanChen's picture
init
f549064
raw
history blame
7.46 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import torch
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
class SSHContextModule(BaseModule):
"""This is an implementation of `SSH context module` described in `SSH:
Single Stage Headless Face Detector.
<https://arxiv.org/pdf/1708.03979.pdf>`_.
Args:
in_channels (int): Number of input channels used at each scale.
out_channels (int): Number of output channels used at each scale.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN').
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
init_cfg: OptMultiConfig = None):
super().__init__(init_cfg=init_cfg)
assert out_channels % 4 == 0
self.in_channels = in_channels
self.out_channels = out_channels
self.conv5x5_1 = ConvModule(
self.in_channels,
self.out_channels // 4,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
)
self.conv5x5_2 = ConvModule(
self.out_channels // 4,
self.out_channels // 4,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
self.conv7x7_2 = ConvModule(
self.out_channels // 4,
self.out_channels // 4,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
)
self.conv7x7_3 = ConvModule(
self.out_channels // 4,
self.out_channels // 4,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None,
)
def forward(self, x: torch.Tensor) -> tuple:
conv5x5_1 = self.conv5x5_1(x)
conv5x5 = self.conv5x5_2(conv5x5_1)
conv7x7_2 = self.conv7x7_2(conv5x5_1)
conv7x7 = self.conv7x7_3(conv7x7_2)
return (conv5x5, conv7x7)
class SSHDetModule(BaseModule):
"""This is an implementation of `SSH detection module` described in `SSH:
Single Stage Headless Face Detector.
<https://arxiv.org/pdf/1708.03979.pdf>`_.
Args:
in_channels (int): Number of input channels used at each scale.
out_channels (int): Number of output channels used at each scale.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN').
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
init_cfg: OptMultiConfig = None):
super().__init__(init_cfg=init_cfg)
assert out_channels % 4 == 0
self.in_channels = in_channels
self.out_channels = out_channels
self.conv3x3 = ConvModule(
self.in_channels,
self.out_channels // 2,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
self.context_module = SSHContextModule(
in_channels=self.in_channels,
out_channels=self.out_channels,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
def forward(self, x: torch.Tensor) -> torch.Tensor:
conv3x3 = self.conv3x3(x)
conv5x5, conv7x7 = self.context_module(x)
out = torch.cat([conv3x3, conv5x5, conv7x7], dim=1)
out = F.relu(out)
return out
@MODELS.register_module()
class SSH(BaseModule):
"""`SSH Neck` used in `SSH: Single Stage Headless Face Detector.
<https://arxiv.org/pdf/1708.03979.pdf>`_.
Args:
num_scales (int): The number of scales / stages.
in_channels (list[int]): The number of input channels per scale.
out_channels (list[int]): The number of output channels per scale.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN').
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Example:
>>> import torch
>>> in_channels = [8, 16, 32, 64]
>>> out_channels = [16, 32, 64, 128]
>>> scales = [340, 170, 84, 43]
>>> inputs = [torch.rand(1, c, s, s)
... for c, s in zip(in_channels, scales)]
>>> self = SSH(num_scales=4, in_channels=in_channels,
... out_channels=out_channels)
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
... print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 16, 340, 340])
outputs[1].shape = torch.Size([1, 32, 170, 170])
outputs[2].shape = torch.Size([1, 64, 84, 84])
outputs[3].shape = torch.Size([1, 128, 43, 43])
"""
def __init__(self,
num_scales: int,
in_channels: List[int],
out_channels: List[int],
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
init_cfg: OptMultiConfig = dict(
type='Xavier', layer='Conv2d', distribution='uniform')):
super().__init__(init_cfg=init_cfg)
assert (num_scales == len(in_channels) == len(out_channels))
self.num_scales = num_scales
self.in_channels = in_channels
self.out_channels = out_channels
for idx in range(self.num_scales):
in_c, out_c = self.in_channels[idx], self.out_channels[idx]
self.add_module(
f'ssh_module{idx}',
SSHDetModule(
in_channels=in_c,
out_channels=out_c,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
def forward(self, inputs: Tuple[torch.Tensor]) -> tuple:
assert len(inputs) == self.num_scales
outs = []
for idx, x in enumerate(inputs):
ssh_module = getattr(self, f'ssh_module{idx}')
out = ssh_module(x)
outs.append(out)
return tuple(outs)