Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmdet.registry import MODELS | |
from .fpn import FPN | |
class PAFPN(FPN): | |
"""Path Aggregation Network for Instance Segmentation. | |
This is an implementation of the `PAFPN in Path Aggregation Network | |
<https://arxiv.org/abs/1803.01534>`_. | |
Args: | |
in_channels (List[int]): Number of input channels per scale. | |
out_channels (int): Number of output channels (used at each scale) | |
num_outs (int): Number of output scales. | |
start_level (int): Index of the start input backbone level used to | |
build the feature pyramid. Default: 0. | |
end_level (int): Index of the end input backbone level (exclusive) to | |
build the feature pyramid. Default: -1, which means the last level. | |
add_extra_convs (bool | str): If bool, it decides whether to add conv | |
layers on top of the original feature maps. Default to False. | |
If True, it is equivalent to `add_extra_convs='on_input'`. | |
If str, it specifies the source feature map of the extra convs. | |
Only the following options are allowed | |
- 'on_input': Last feat map of neck inputs (i.e. backbone feature). | |
- 'on_lateral': Last feature map after lateral convs. | |
- 'on_output': The last output feature map after fpn convs. | |
relu_before_extra_convs (bool): Whether to apply relu before the extra | |
conv. Default: False. | |
no_norm_on_lateral (bool): Whether to apply norm on lateral. | |
Default: False. | |
conv_cfg (dict): Config dict for convolution layer. Default: None. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (str): Config dict for activation layer in ConvModule. | |
Default: None. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
num_outs, | |
start_level=0, | |
end_level=-1, | |
add_extra_convs=False, | |
relu_before_extra_convs=False, | |
no_norm_on_lateral=False, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=None, | |
init_cfg=dict( | |
type='Xavier', layer='Conv2d', distribution='uniform')): | |
super(PAFPN, self).__init__( | |
in_channels, | |
out_channels, | |
num_outs, | |
start_level, | |
end_level, | |
add_extra_convs, | |
relu_before_extra_convs, | |
no_norm_on_lateral, | |
conv_cfg, | |
norm_cfg, | |
act_cfg, | |
init_cfg=init_cfg) | |
# add extra bottom up pathway | |
self.downsample_convs = nn.ModuleList() | |
self.pafpn_convs = nn.ModuleList() | |
for i in range(self.start_level + 1, self.backbone_end_level): | |
d_conv = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
pafpn_conv = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
self.downsample_convs.append(d_conv) | |
self.pafpn_convs.append(pafpn_conv) | |
def forward(self, inputs): | |
"""Forward function.""" | |
assert len(inputs) == len(self.in_channels) | |
# build laterals | |
laterals = [ | |
lateral_conv(inputs[i + self.start_level]) | |
for i, lateral_conv in enumerate(self.lateral_convs) | |
] | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] = laterals[i - 1] + F.interpolate( | |
laterals[i], size=prev_shape, mode='nearest') | |
# build outputs | |
# part 1: from original levels | |
inter_outs = [ | |
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) | |
] | |
# part 2: add bottom-up path | |
for i in range(0, used_backbone_levels - 1): | |
inter_outs[i + 1] = inter_outs[i + 1] + \ | |
self.downsample_convs[i](inter_outs[i]) | |
outs = [] | |
outs.append(inter_outs[0]) | |
outs.extend([ | |
self.pafpn_convs[i - 1](inter_outs[i]) | |
for i in range(1, used_backbone_levels) | |
]) | |
# part 3: add extra levels | |
if self.num_outs > len(outs): | |
# use max pool to get more levels on top of outputs | |
# (e.g., Faster R-CNN, Mask R-CNN) | |
if not self.add_extra_convs: | |
for i in range(self.num_outs - used_backbone_levels): | |
outs.append(F.max_pool2d(outs[-1], 1, stride=2)) | |
# add conv layers on top of original feature maps (RetinaNet) | |
else: | |
if self.add_extra_convs == 'on_input': | |
orig = inputs[self.backbone_end_level - 1] | |
outs.append(self.fpn_convs[used_backbone_levels](orig)) | |
elif self.add_extra_convs == 'on_lateral': | |
outs.append(self.fpn_convs[used_backbone_levels]( | |
laterals[-1])) | |
elif self.add_extra_convs == 'on_output': | |
outs.append(self.fpn_convs[used_backbone_levels](outs[-1])) | |
else: | |
raise NotImplementedError | |
for i in range(used_backbone_levels + 1, self.num_outs): | |
if self.relu_before_extra_convs: | |
outs.append(self.fpn_convs[i](F.relu(outs[-1]))) | |
else: | |
outs.append(self.fpn_convs[i](outs[-1])) | |
return tuple(outs) | |