ai-photo-gallery / mmdet /models /necks /channel_mapper.py
KyanChen's picture
init
f549064
raw
history blame
No virus
4.26 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.utils import OptConfigType, OptMultiConfig
@MODELS.register_module()
class ChannelMapper(BaseModule):
"""Channel Mapper to reduce/increase channels of backbone features.
This is used to reduce/increase channels of backbone features.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale).
kernel_size (int, optional): kernel_size for reducing channels (used
at each scale). Default: 3.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Default: None.
norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
normalization layer. Default: None.
act_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
activation layer in ConvModule. Default: dict(type='ReLU').
num_outs (int, optional): Number of output feature maps. There would
be extra_convs when num_outs larger than the length of in_channels.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or dict],
optional): Initialization config dict.
Example:
>>> import torch
>>> in_channels = [2, 3, 5, 7]
>>> scales = [340, 170, 84, 43]
>>> inputs = [torch.rand(1, c, s, s)
... for c, s in zip(in_channels, scales)]
>>> self = ChannelMapper(in_channels, 11, 3).eval()
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
... print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 11, 340, 340])
outputs[1].shape = torch.Size([1, 11, 170, 170])
outputs[2].shape = torch.Size([1, 11, 84, 84])
outputs[3].shape = torch.Size([1, 11, 43, 43])
"""
def __init__(
self,
in_channels: List[int],
out_channels: int,
kernel_size: int = 3,
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
act_cfg: OptConfigType = dict(type='ReLU'),
num_outs: int = None,
init_cfg: OptMultiConfig = dict(
type='Xavier', layer='Conv2d', distribution='uniform')
) -> None:
super().__init__(init_cfg=init_cfg)
assert isinstance(in_channels, list)
self.extra_convs = None
if num_outs is None:
num_outs = len(in_channels)
self.convs = nn.ModuleList()
for in_channel in in_channels:
self.convs.append(
ConvModule(
in_channel,
out_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
if num_outs > len(in_channels):
self.extra_convs = nn.ModuleList()
for i in range(len(in_channels), num_outs):
if i == len(in_channels):
in_channel = in_channels[-1]
else:
in_channel = out_channels
self.extra_convs.append(
ConvModule(
in_channel,
out_channels,
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]:
"""Forward function."""
assert len(inputs) == len(self.convs)
outs = [self.convs[i](inputs[i]) for i in range(len(inputs))]
if self.extra_convs:
for i in range(len(self.extra_convs)):
if i == 0:
outs.append(self.extra_convs[0](inputs[-1]))
else:
outs.append(self.extra_convs[i](outs[-1]))
return tuple(outs)