Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from mmcv.cnn import build_activation_layer, build_norm_layer | |
from mmcv.cnn.bricks import DropPath | |
from mmengine.model import BaseModule | |
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
from mmcls.registry import MODELS | |
from .base_backbone import BaseBackbone | |
def conv_bn(in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups, | |
dilation=1, | |
norm_cfg=dict(type='BN')): | |
"""Construct a sequential conv and bn. | |
Args: | |
in_channels (int): Dimension of input features. | |
out_channels (int): Dimension of output features. | |
kernel_size (int): kernel_size of the convolution. | |
stride (int): stride of the convolution. | |
padding (int): stride of the convolution. | |
groups (int): groups of the convolution. | |
dilation (int): dilation of the convolution. Default to 1. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default to ``dict(type='BN', requires_grad=True)``. | |
Returns: | |
nn.Sequential(): A conv layer and a batch norm layer. | |
""" | |
if padding is None: | |
padding = kernel_size // 2 | |
result = nn.Sequential() | |
result.add_module( | |
'conv', | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=False)) | |
result.add_module('bn', build_norm_layer(norm_cfg, out_channels)[1]) | |
return result | |
def conv_bn_relu(in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups, | |
dilation=1): | |
"""Construct a sequential conv, bn and relu. | |
Args: | |
in_channels (int): Dimension of input features. | |
out_channels (int): Dimension of output features. | |
kernel_size (int): kernel_size of the convolution. | |
stride (int): stride of the convolution. | |
padding (int): stride of the convolution. | |
groups (int): groups of the convolution. | |
dilation (int): dilation of the convolution. Default to 1. | |
Returns: | |
nn.Sequential(): A conv layer, batch norm layer and a relu function. | |
""" | |
if padding is None: | |
padding = kernel_size // 2 | |
result = conv_bn( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
dilation=dilation) | |
result.add_module('nonlinear', nn.ReLU()) | |
return result | |
def fuse_bn(conv, bn): | |
"""Fuse the parameters in a branch with a conv and bn. | |
Args: | |
conv (nn.Conv2d): The convolution module to fuse. | |
bn (nn.BatchNorm2d): The batch normalization to fuse. | |
Returns: | |
tuple[torch.Tensor, torch.Tensor]: The parameters obtained after | |
fusing the parameters of conv and bn in one branch. | |
The first element is the weight and the second is the bias. | |
""" | |
kernel = conv.weight | |
running_mean = bn.running_mean | |
running_var = bn.running_var | |
gamma = bn.weight | |
beta = bn.bias | |
eps = bn.eps | |
std = (running_var + eps).sqrt() | |
t = (gamma / std).reshape(-1, 1, 1, 1) | |
return kernel * t, beta - running_mean * gamma / std | |
class ReparamLargeKernelConv(BaseModule): | |
"""Super large kernel implemented by with large convolutions. | |
Input: Tensor with shape [B, C, H, W]. | |
Output: Tensor with shape [B, C, H, W]. | |
Args: | |
in_channels (int): Dimension of input features. | |
out_channels (int): Dimension of output features. | |
kernel_size (int): kernel_size of the large convolution. | |
stride (int): stride of the large convolution. | |
groups (int): groups of the large convolution. | |
small_kernel (int): kernel_size of the small convolution. | |
small_kernel_merged (bool): Whether to switch the model structure to | |
deployment mode (merge the small kernel to the large kernel). | |
Default to False. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Defaults to None | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups, | |
small_kernel, | |
small_kernel_merged=False, | |
init_cfg=None): | |
super(ReparamLargeKernelConv, self).__init__(init_cfg) | |
self.kernel_size = kernel_size | |
self.small_kernel = small_kernel | |
self.small_kernel_merged = small_kernel_merged | |
# We assume the conv does not change the feature map size, | |
# so padding = k//2. | |
# Otherwise, you may configure padding as you wish, | |
# and change the padding of small_conv accordingly. | |
padding = kernel_size // 2 | |
if small_kernel_merged: | |
self.lkb_reparam = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=1, | |
groups=groups, | |
bias=True) | |
else: | |
self.lkb_origin = conv_bn( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=1, | |
groups=groups) | |
if small_kernel is not None: | |
assert small_kernel <= kernel_size | |
self.small_conv = conv_bn( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=small_kernel, | |
stride=stride, | |
padding=small_kernel // 2, | |
groups=groups, | |
dilation=1) | |
def forward(self, inputs): | |
if hasattr(self, 'lkb_reparam'): | |
out = self.lkb_reparam(inputs) | |
else: | |
out = self.lkb_origin(inputs) | |
if hasattr(self, 'small_conv'): | |
out += self.small_conv(inputs) | |
return out | |
def get_equivalent_kernel_bias(self): | |
eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn) | |
if hasattr(self, 'small_conv'): | |
small_k, small_b = fuse_bn(self.small_conv.conv, | |
self.small_conv.bn) | |
eq_b += small_b | |
# add to the central part | |
eq_k += nn.functional.pad( | |
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4) | |
return eq_k, eq_b | |
def merge_kernel(self): | |
"""Switch the model structure from training mode to deployment mode.""" | |
if self.small_kernel_merged: | |
return | |
eq_k, eq_b = self.get_equivalent_kernel_bias() | |
self.lkb_reparam = nn.Conv2d( | |
in_channels=self.lkb_origin.conv.in_channels, | |
out_channels=self.lkb_origin.conv.out_channels, | |
kernel_size=self.lkb_origin.conv.kernel_size, | |
stride=self.lkb_origin.conv.stride, | |
padding=self.lkb_origin.conv.padding, | |
dilation=self.lkb_origin.conv.dilation, | |
groups=self.lkb_origin.conv.groups, | |
bias=True) | |
self.lkb_reparam.weight.data = eq_k | |
self.lkb_reparam.bias.data = eq_b | |
self.__delattr__('lkb_origin') | |
if hasattr(self, 'small_conv'): | |
self.__delattr__('small_conv') | |
self.small_kernel_merged = True | |
class ConvFFN(BaseModule): | |
"""Mlp implemented by with 1*1 convolutions. | |
Input: Tensor with shape [B, C, H, W]. | |
Output: Tensor with shape [B, C, H, W]. | |
Args: | |
in_channels (int): Dimension of input features. | |
internal_channels (int): Dimension of hidden features. | |
out_channels (int): Dimension of output features. | |
drop_path (float): Stochastic depth rate. Defaults to 0. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default to ``dict(type='BN', requires_grad=True)``. | |
act_cfg (dict): The config dict for activation between pointwise | |
convolution. Defaults to ``dict(type='GELU')``. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
in_channels, | |
internal_channels, | |
out_channels, | |
drop_path, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='GELU'), | |
init_cfg=None): | |
super(ConvFFN, self).__init__(init_cfg) | |
self.drop_path = DropPath( | |
drop_prob=drop_path) if drop_path > 0. else nn.Identity() | |
self.preffn_bn = build_norm_layer(norm_cfg, in_channels)[1] | |
self.pw1 = conv_bn( | |
in_channels=in_channels, | |
out_channels=internal_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1) | |
self.pw2 = conv_bn( | |
in_channels=internal_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1) | |
self.nonlinear = build_activation_layer(act_cfg) | |
def forward(self, x): | |
out = self.preffn_bn(x) | |
out = self.pw1(out) | |
out = self.nonlinear(out) | |
out = self.pw2(out) | |
return x + self.drop_path(out) | |
class RepLKBlock(BaseModule): | |
"""RepLKBlock for RepLKNet backbone. | |
Args: | |
in_channels (int): The input channels of the block. | |
dw_channels (int): The intermediate channels of the block, | |
i.e., input channels of the large kernel convolution. | |
block_lk_size (int): size of the super large kernel. Defaults: 31. | |
small_kernel (int): size of the parallel small kernel. Defaults: 5. | |
drop_path (float): Stochastic depth rate. Defaults: 0. | |
small_kernel_merged (bool): Whether to switch the model structure to | |
deployment mode (merge the small kernel to the large kernel). | |
Default to False. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default to ``dict(type='BN', requires_grad=True)``. | |
act_cfg (dict): Config dict for activation layer. | |
Default to ``dict(type='ReLU')``. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default to None | |
""" | |
def __init__(self, | |
in_channels, | |
dw_channels, | |
block_lk_size, | |
small_kernel, | |
drop_path, | |
small_kernel_merged=False, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU'), | |
init_cfg=None): | |
super(RepLKBlock, self).__init__(init_cfg) | |
self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0, groups=1) | |
self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0, groups=1) | |
self.large_kernel = ReparamLargeKernelConv( | |
in_channels=dw_channels, | |
out_channels=dw_channels, | |
kernel_size=block_lk_size, | |
stride=1, | |
groups=dw_channels, | |
small_kernel=small_kernel, | |
small_kernel_merged=small_kernel_merged) | |
self.lk_nonlinear = build_activation_layer(act_cfg) | |
self.prelkb_bn = build_norm_layer(norm_cfg, in_channels)[1] | |
self.drop_path = DropPath( | |
drop_prob=drop_path) if drop_path > 0. else nn.Identity() | |
# print('drop path:', self.drop_path) | |
def forward(self, x): | |
out = self.prelkb_bn(x) | |
out = self.pw1(out) | |
out = self.large_kernel(out) | |
out = self.lk_nonlinear(out) | |
out = self.pw2(out) | |
return x + self.drop_path(out) | |
class RepLKNetStage(BaseModule): | |
""" | |
generate RepLKNet blocks for a stage | |
return: RepLKNet blocks | |
Args: | |
channels (int): The input channels of the stage. | |
num_blocks (int): The number of blocks of the stage. | |
stage_lk_size (int): size of the super large kernel. Defaults: 31. | |
drop_path (float): Stochastic depth rate. Defaults: 0. | |
small_kernel (int): size of the parallel small kernel. Defaults: 5. | |
dw_ratio (float): The intermediate channels | |
expansion ratio of the block. Defaults: 1. | |
ffn_ratio (float): Mlp expansion ratio. Defaults to 4. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default to False. | |
small_kernel_merged (bool): Whether to switch the model structure to | |
deployment mode (merge the small kernel to the large kernel). | |
Default to False. | |
norm_intermediate_features (bool): Construct and config norm layer | |
or not. | |
Using True will normalize the intermediate features for | |
downstream dense prediction tasks. | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default to ``dict(type='BN', requires_grad=True)``. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default to None | |
""" | |
def __init__( | |
self, | |
channels, | |
num_blocks, | |
stage_lk_size, | |
drop_path, | |
small_kernel, | |
dw_ratio=1, | |
ffn_ratio=4, | |
with_cp=False, # train with torch.utils.checkpoint to save memory | |
small_kernel_merged=False, | |
norm_intermediate_features=False, | |
norm_cfg=dict(type='BN'), | |
init_cfg=None): | |
super(RepLKNetStage, self).__init__(init_cfg) | |
self.with_cp = with_cp | |
blks = [] | |
for i in range(num_blocks): | |
block_drop_path = drop_path[i] if isinstance(drop_path, | |
list) else drop_path | |
# Assume all RepLK Blocks within a stage share the same lk_size. | |
# You may tune it on your own model. | |
replk_block = RepLKBlock( | |
in_channels=channels, | |
dw_channels=int(channels * dw_ratio), | |
block_lk_size=stage_lk_size, | |
small_kernel=small_kernel, | |
drop_path=block_drop_path, | |
small_kernel_merged=small_kernel_merged) | |
convffn_block = ConvFFN( | |
in_channels=channels, | |
internal_channels=int(channels * ffn_ratio), | |
out_channels=channels, | |
drop_path=block_drop_path) | |
blks.append(replk_block) | |
blks.append(convffn_block) | |
self.blocks = nn.ModuleList(blks) | |
if norm_intermediate_features: | |
self.norm = build_norm_layer(norm_cfg, channels)[1] | |
else: | |
self.norm = nn.Identity() | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.with_cp: | |
x = checkpoint.checkpoint(blk, x) # Save training memory | |
else: | |
x = blk(x) | |
return x | |
class RepLKNet(BaseBackbone): | |
"""RepLKNet backbone. | |
A PyTorch impl of : | |
`Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs | |
<https://arxiv.org/abs/2203.06717>`_ | |
Args: | |
arch (str | dict): The parameter of RepLKNet. | |
If it's a dict, it should contain the following keys: | |
- large_kernel_sizes (Sequence[int]): | |
Large kernel size in each stage. | |
- layers (Sequence[int]): Number of blocks in each stage. | |
- channels (Sequence[int]): Number of channels in each stage. | |
- small_kernel (int): size of the parallel small kernel. | |
- dw_ratio (float): The intermediate channels | |
expansion ratio of the block. | |
in_channels (int): Number of input image channels. Default to 3. | |
ffn_ratio (float): Mlp expansion ratio. Defaults to 4. | |
out_indices (Sequence[int]): Output from which stages. | |
Default to (3, ). | |
strides (Sequence[int]): Strides of the first block of each stage. | |
Default to (2, 2, 2, 2). | |
dilations (Sequence[int]): Dilation of each stage. | |
Default to (1, 1, 1, 1). | |
frozen_stages (int): Stages to be frozen | |
(all param fixed). -1 means not freezing any parameters. | |
Default to -1. | |
conv_cfg (dict | None): The config dict for conv layers. | |
Default to None. | |
norm_cfg (dict): The config dict for norm layers. | |
Default to ``dict(type='BN')``. | |
act_cfg (dict): Config dict for activation layer. | |
Default to ``dict(type='ReLU')``. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default to False. | |
deploy (bool): Whether to switch the model structure to deployment | |
mode. Default to False. | |
norm_intermediate_features (bool): Construct and | |
config norm layer or not. | |
Using True will normalize the intermediate features | |
for downstream dense prediction tasks. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default to False. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
arch_settings = { | |
'31B': | |
dict( | |
large_kernel_sizes=[31, 29, 27, 13], | |
layers=[2, 2, 18, 2], | |
channels=[128, 256, 512, 1024], | |
small_kernel=5, | |
dw_ratio=1), | |
'31L': | |
dict( | |
large_kernel_sizes=[31, 29, 27, 13], | |
layers=[2, 2, 18, 2], | |
channels=[192, 384, 768, 1536], | |
small_kernel=5, | |
dw_ratio=1), | |
'XL': | |
dict( | |
large_kernel_sizes=[27, 27, 27, 13], | |
layers=[2, 2, 18, 2], | |
channels=[256, 512, 1024, 2048], | |
small_kernel=None, | |
dw_ratio=1.5), | |
} | |
def __init__(self, | |
arch, | |
in_channels=3, | |
ffn_ratio=4, | |
out_indices=(3, ), | |
strides=(2, 2, 2, 2), | |
dilations=(1, 1, 1, 1), | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU'), | |
with_cp=False, | |
drop_path_rate=0.3, | |
small_kernel_merged=False, | |
norm_intermediate_features=False, | |
norm_eval=False, | |
init_cfg=[ | |
dict(type='Kaiming', layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
]): | |
super(RepLKNet, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
assert arch in self.arch_settings, \ | |
f'"arch": "{arch}" is not one of the arch_settings' | |
arch = self.arch_settings[arch] | |
elif not isinstance(arch, dict): | |
raise TypeError('Expect "arch" to be either a string ' | |
f'or a dict, got {type(arch)}') | |
assert len(arch['layers']) == len( | |
arch['channels']) == len(strides) == len(dilations) | |
assert max(out_indices) < len(arch['layers']) | |
self.arch = arch | |
self.in_channels = in_channels | |
self.out_indices = out_indices | |
self.strides = strides | |
self.dilations = dilations | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.with_cp = with_cp | |
self.drop_path_rate = drop_path_rate | |
self.small_kernel_merged = small_kernel_merged | |
self.norm_eval = norm_eval | |
self.norm_intermediate_features = norm_intermediate_features | |
self.out_indices = out_indices | |
base_width = self.arch['channels'][0] | |
self.norm_intermediate_features = norm_intermediate_features | |
self.num_stages = len(self.arch['layers']) | |
self.stem = nn.ModuleList([ | |
conv_bn_relu( | |
in_channels=in_channels, | |
out_channels=base_width, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=1), | |
conv_bn_relu( | |
in_channels=base_width, | |
out_channels=base_width, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
groups=base_width), | |
conv_bn_relu( | |
in_channels=base_width, | |
out_channels=base_width, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1), | |
conv_bn_relu( | |
in_channels=base_width, | |
out_channels=base_width, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=base_width) | |
]) | |
# stochastic depth. We set block-wise drop-path rate. | |
# The higher level blocks are more likely to be dropped. | |
# This implementation follows Swin. | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, | |
sum(self.arch['layers'])) | |
] | |
self.stages = nn.ModuleList() | |
self.transitions = nn.ModuleList() | |
for stage_idx in range(self.num_stages): | |
layer = RepLKNetStage( | |
channels=self.arch['channels'][stage_idx], | |
num_blocks=self.arch['layers'][stage_idx], | |
stage_lk_size=self.arch['large_kernel_sizes'][stage_idx], | |
drop_path=dpr[sum(self.arch['layers'][:stage_idx] | |
):sum(self.arch['layers'][:stage_idx + 1])], | |
small_kernel=self.arch['small_kernel'], | |
dw_ratio=self.arch['dw_ratio'], | |
ffn_ratio=ffn_ratio, | |
with_cp=with_cp, | |
small_kernel_merged=small_kernel_merged, | |
norm_intermediate_features=(stage_idx in out_indices)) | |
self.stages.append(layer) | |
if stage_idx < len(self.arch['layers']) - 1: | |
transition = nn.Sequential( | |
conv_bn_relu( | |
self.arch['channels'][stage_idx], | |
self.arch['channels'][stage_idx + 1], | |
1, | |
1, | |
0, | |
groups=1), | |
conv_bn_relu( | |
self.arch['channels'][stage_idx + 1], | |
self.arch['channels'][stage_idx + 1], | |
3, | |
stride=2, | |
padding=1, | |
groups=self.arch['channels'][stage_idx + 1])) | |
self.transitions.append(transition) | |
def forward_features(self, x): | |
x = self.stem[0](x) | |
for stem_layer in self.stem[1:]: | |
if self.with_cp: | |
x = checkpoint.checkpoint(stem_layer, x) # save memory | |
else: | |
x = stem_layer(x) | |
# Need the intermediate feature maps | |
outs = [] | |
for stage_idx in range(self.num_stages): | |
x = self.stages[stage_idx](x) | |
if stage_idx in self.out_indices: | |
outs.append(self.stages[stage_idx].norm(x)) | |
# For RepLKNet-XL normalize the features | |
# before feeding them into the heads | |
if stage_idx < self.num_stages - 1: | |
x = self.transitions[stage_idx](x) | |
return outs | |
def forward(self, x): | |
x = self.forward_features(x) | |
return tuple(x) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.stem.eval() | |
for param in self.stem.parameters(): | |
param.requires_grad = False | |
for i in range(self.frozen_stages): | |
stage = self.stages[i] | |
stage.eval() | |
for param in stage.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(RepLKNet, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
def switch_to_deploy(self): | |
for m in self.modules(): | |
if hasattr(m, 'merge_kernel'): | |
m.merge_kernel() | |
self.small_kernel_merged = True | |