Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from functools import partial | |
from itertools import chain | |
from typing import Sequence | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn.bricks import DropPath, build_activation_layer, build_norm_layer | |
from mmengine.model import BaseModule, ModuleList, Sequential | |
from mmengine.registry import MODELS | |
from .base_backbone import BaseBackbone | |
class LayerNorm2d(nn.LayerNorm): | |
"""LayerNorm on channels for 2d images. | |
Args: | |
num_channels (int): The number of channels of the input tensor. | |
eps (float): a value added to the denominator for numerical stability. | |
Defaults to 1e-5. | |
elementwise_affine (bool): a boolean value that when set to ``True``, | |
this module has learnable per-element affine parameters initialized | |
to ones (for weights) and zeros (for biases). Defaults to True. | |
""" | |
def __init__(self, num_channels: int, **kwargs) -> None: | |
super().__init__(num_channels, **kwargs) | |
self.num_channels = self.normalized_shape[0] | |
def forward(self, x, data_format='channel_first'): | |
assert x.dim() == 4, 'LayerNorm2d only supports inputs with shape ' \ | |
f'(N, C, H, W), but got tensor with shape {x.shape}' | |
if data_format == 'channel_last': | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, | |
self.eps) | |
elif data_format == 'channel_first': | |
x = x.permute(0, 2, 3, 1) | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, | |
self.eps) | |
# If the output is discontiguous, it may cause some unexpected | |
# problem in the downstream tasks | |
x = x.permute(0, 3, 1, 2).contiguous() | |
return x | |
class ConvNeXtBlock(BaseModule): | |
"""ConvNeXt Block. | |
Args: | |
in_channels (int): The number of input channels. | |
dw_conv_cfg (dict): Config of depthwise convolution. | |
Defaults to ``dict(kernel_size=7, padding=3)``. | |
norm_cfg (dict): The config dict for norm layers. | |
Defaults to ``dict(type='LN2d', eps=1e-6)``. | |
act_cfg (dict): The config dict for activation between pointwise | |
convolution. Defaults to ``dict(type='GELU')``. | |
mlp_ratio (float): The expansion ratio in both pointwise convolution. | |
Defaults to 4. | |
linear_pw_conv (bool): Whether to use linear layer to do pointwise | |
convolution. More details can be found in the note. | |
Defaults to True. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
layer_scale_init_value (float): Init value for Layer Scale. | |
Defaults to 1e-6. | |
Note: | |
There are two equivalent implementations: | |
1. DwConv -> LayerNorm -> 1x1 Conv -> GELU -> 1x1 Conv; | |
all outputs are in (N, C, H, W). | |
2. DwConv -> LayerNorm -> Permute to (N, H, W, C) -> Linear -> GELU | |
-> Linear; Permute back | |
As default, we use the second to align with the official repository. | |
And it may be slightly faster. | |
""" | |
def __init__(self, | |
in_channels, | |
dw_conv_cfg=dict(kernel_size=7, padding=3), | |
norm_cfg=dict(type='LN2d', eps=1e-6), | |
act_cfg=dict(type='GELU'), | |
mlp_ratio=4., | |
linear_pw_conv=True, | |
drop_path_rate=0., | |
layer_scale_init_value=1e-6, | |
with_cp=False): | |
super().__init__() | |
self.with_cp = with_cp | |
self.depthwise_conv = nn.Conv2d( | |
in_channels, in_channels, groups=in_channels, **dw_conv_cfg) | |
self.linear_pw_conv = linear_pw_conv | |
self.norm = build_norm_layer(norm_cfg, in_channels)[1] | |
mid_channels = int(mlp_ratio * in_channels) | |
if self.linear_pw_conv: | |
# Use linear layer to do pointwise conv. | |
pw_conv = nn.Linear | |
else: | |
pw_conv = partial(nn.Conv2d, kernel_size=1) | |
self.pointwise_conv1 = pw_conv(in_channels, mid_channels) | |
self.act = build_activation_layer(act_cfg) | |
self.pointwise_conv2 = pw_conv(mid_channels, in_channels) | |
self.gamma = nn.Parameter( | |
layer_scale_init_value * torch.ones((in_channels)), | |
requires_grad=True) if layer_scale_init_value > 0 else None | |
self.drop_path = DropPath( | |
drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
def forward(self, x): | |
def _inner_forward(x): | |
shortcut = x | |
x = self.depthwise_conv(x) | |
if self.linear_pw_conv: | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x, data_format='channel_last') | |
x = self.pointwise_conv1(x) | |
x = self.act(x) | |
x = self.pointwise_conv2(x) | |
if self.linear_pw_conv: | |
x = x.permute(0, 3, 1, 2) # permute back | |
if self.gamma is not None: | |
x = x.mul(self.gamma.view(1, -1, 1, 1)) | |
x = shortcut + self.drop_path(x) | |
return x | |
if self.with_cp and x.requires_grad: | |
x = cp.checkpoint(_inner_forward, x) | |
else: | |
x = _inner_forward(x) | |
return x | |
class ConvNeXt(BaseBackbone): | |
"""ConvNeXt. | |
A PyTorch implementation of : `A ConvNet for the 2020s | |
<https://arxiv.org/pdf/2201.03545.pdf>`_ | |
Modified from the `official repo | |
<https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py>`_ | |
and `timm | |
<https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/convnext.py>`_. | |
Args: | |
arch (str | dict): The model's architecture. If string, it should be | |
one of architecture in ``ConvNeXt.arch_settings``. And if dict, it | |
should include the following two keys: | |
- depths (list[int]): Number of blocks at each stage. | |
- channels (list[int]): The number of channels at each stage. | |
Defaults to 'tiny'. | |
in_channels (int): Number of input image channels. Defaults to 3. | |
stem_patch_size (int): The size of one patch in the stem layer. | |
Defaults to 4. | |
norm_cfg (dict): The config dict for norm layers. | |
Defaults to ``dict(type='LN2d', eps=1e-6)``. | |
act_cfg (dict): The config dict for activation between pointwise | |
convolution. Defaults to ``dict(type='GELU')``. | |
linear_pw_conv (bool): Whether to use linear layer to do pointwise | |
convolution. Defaults to True. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
layer_scale_init_value (float): Init value for Layer Scale. | |
Defaults to 1e-6. | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Defaults to 0, which means not freezing any parameters. | |
gap_before_final_norm (bool): Whether to globally average the feature | |
map before the final norm layer. In the official repo, it's only | |
used in classification task. Defaults to True. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
init_cfg (dict, optional): Initialization config dict | |
""" # noqa: E501 | |
arch_settings = { | |
'tiny': { | |
'depths': [3, 3, 9, 3], | |
'channels': [96, 192, 384, 768] | |
}, | |
'small': { | |
'depths': [3, 3, 27, 3], | |
'channels': [96, 192, 384, 768] | |
}, | |
'base': { | |
'depths': [3, 3, 27, 3], | |
'channels': [128, 256, 512, 1024] | |
}, | |
'large': { | |
'depths': [3, 3, 27, 3], | |
'channels': [192, 384, 768, 1536] | |
}, | |
'xlarge': { | |
'depths': [3, 3, 27, 3], | |
'channels': [256, 512, 1024, 2048] | |
}, | |
} | |
def __init__(self, | |
arch='tiny', | |
in_channels=3, | |
stem_patch_size=4, | |
norm_cfg=dict(type='LN2d', eps=1e-6), | |
act_cfg=dict(type='GELU'), | |
linear_pw_conv=True, | |
drop_path_rate=0., | |
layer_scale_init_value=1e-6, | |
out_indices=-1, | |
frozen_stages=0, | |
gap_before_final_norm=True, | |
with_cp=False, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
if isinstance(arch, str): | |
assert arch in self.arch_settings, \ | |
f'Unavailable arch, please choose from ' \ | |
f'({set(self.arch_settings)}) or pass a dict.' | |
arch = self.arch_settings[arch] | |
elif isinstance(arch, dict): | |
assert 'depths' in arch and 'channels' in arch, \ | |
f'The arch dict must have "depths" and "channels", ' \ | |
f'but got {list(arch.keys())}.' | |
self.depths = arch['depths'] | |
self.channels = arch['channels'] | |
assert (isinstance(self.depths, Sequence) | |
and isinstance(self.channels, Sequence) | |
and len(self.depths) == len(self.channels)), \ | |
f'The "depths" ({self.depths}) and "channels" ({self.channels}) ' \ | |
'should be both sequence with the same length.' | |
self.num_stages = len(self.depths) | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = 4 + index | |
assert out_indices[i] >= 0, f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.gap_before_final_norm = gap_before_final_norm | |
# stochastic depth decay rule | |
dpr = [ | |
x.item() | |
for x in torch.linspace(0, drop_path_rate, sum(self.depths)) | |
] | |
block_idx = 0 | |
# 4 downsample layers between stages, including the stem layer. | |
self.downsample_layers = ModuleList() | |
stem = nn.Sequential( | |
nn.Conv2d( | |
in_channels, | |
self.channels[0], | |
kernel_size=stem_patch_size, | |
stride=stem_patch_size), | |
build_norm_layer(norm_cfg, self.channels[0])[1], | |
) | |
self.downsample_layers.append(stem) | |
# 4 feature resolution stages, each consisting of multiple residual | |
# blocks | |
self.stages = nn.ModuleList() | |
for i in range(self.num_stages): | |
depth = self.depths[i] | |
channels = self.channels[i] | |
if i >= 1: | |
downsample_layer = nn.Sequential( | |
build_norm_layer(norm_cfg, self.channels[i - 1])[1], | |
nn.Conv2d( | |
self.channels[i - 1], | |
channels, | |
kernel_size=2, | |
stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
stage = Sequential(*[ | |
ConvNeXtBlock( | |
in_channels=channels, | |
drop_path_rate=dpr[block_idx + j], | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
linear_pw_conv=linear_pw_conv, | |
layer_scale_init_value=layer_scale_init_value, | |
with_cp=with_cp) for j in range(depth) | |
]) | |
block_idx += depth | |
self.stages.append(stage) | |
if i in self.out_indices: | |
norm_layer = build_norm_layer(norm_cfg, channels)[1] | |
self.add_module(f'norm{i}', norm_layer) | |
self._freeze_stages() | |
def forward(self, x): | |
outs = [] | |
for i, stage in enumerate(self.stages): | |
x = self.downsample_layers[i](x) | |
x = stage(x) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
if self.gap_before_final_norm: | |
gap = x.mean([-2, -1], keepdim=True) | |
outs.append(norm_layer(gap).flatten(1)) | |
else: | |
outs.append(norm_layer(x)) | |
return tuple(outs) | |
def _freeze_stages(self): | |
for i in range(self.frozen_stages): | |
downsample_layer = self.downsample_layers[i] | |
stage = self.stages[i] | |
downsample_layer.eval() | |
stage.eval() | |
for param in chain(downsample_layer.parameters(), | |
stage.parameters()): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(ConvNeXt, self).train(mode) | |
self._freeze_stages() | |