Spaces:
Runtime error
Runtime error
# for batch in each gpu is 128, 8 gpu | |
# lr = 5e-4 * 128 * 8 / 512 = 0.001 | |
optim_wrapper = dict( | |
optimizer=dict( | |
type='AdamW', | |
lr=5e-4 * 1024 / 512, | |
weight_decay=0.05, | |
eps=1e-8, | |
betas=(0.9, 0.999)), | |
paramwise_cfg=dict( | |
norm_decay_mult=0.0, | |
bias_decay_mult=0.0, | |
flat_decay_mult=0.0, | |
custom_keys={ | |
'.absolute_pos_embed': dict(decay_mult=0.0), | |
'.relative_position_bias_table': dict(decay_mult=0.0) | |
}), | |
) | |
# learning policy | |
param_scheduler = [ | |
# warm up learning rate scheduler | |
dict( | |
type='LinearLR', | |
start_factor=1e-3, | |
by_epoch=True, | |
end=20, | |
# update by iter | |
convert_to_iter_based=True), | |
# main learning rate scheduler | |
dict(type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=20) | |
] | |
# train, val, test setting | |
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1) | |
val_cfg = dict() | |
test_cfg = dict() | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# based on the actual training batch size. | |
auto_scale_lr = dict(base_batch_size=1024) | |