Spaces:
Runtime error
Runtime error
# dataset settings | |
dataset_type = 'ImageNet' | |
data_preprocessor = dict( | |
num_classes=1000, | |
# RGB format normalization parameters | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
# convert image from BGR to RGB | |
to_rgb=True, | |
) | |
bgr_mean = data_preprocessor['mean'][::-1] | |
bgr_std = data_preprocessor['std'][::-1] | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='RandomResizedCrop', | |
scale=256, | |
backend='pillow', | |
interpolation='bicubic'), | |
dict(type='RandomFlip', prob=0.5, direction='horizontal'), | |
dict( | |
type='RandAugment', | |
policies='timm_increasing', | |
num_policies=2, | |
total_level=10, | |
magnitude_level=9, | |
magnitude_std=0.5, | |
hparams=dict( | |
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), | |
dict( | |
type='RandomErasing', | |
erase_prob=0.25, | |
mode='rand', | |
min_area_ratio=0.02, | |
max_area_ratio=1 / 3, | |
fill_color=bgr_mean, | |
fill_std=bgr_std), | |
dict(type='PackClsInputs'), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='ResizeEdge', | |
scale=292, | |
edge='short', | |
backend='pillow', | |
interpolation='bicubic'), | |
dict(type='CenterCrop', crop_size=256), | |
dict(type='PackClsInputs') | |
] | |
train_dataloader = dict( | |
batch_size=64, | |
num_workers=5, | |
dataset=dict( | |
type=dataset_type, | |
data_root='data/imagenet', | |
ann_file='meta/train.txt', | |
data_prefix='train', | |
pipeline=train_pipeline), | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
) | |
val_dataloader = dict( | |
batch_size=64, | |
num_workers=5, | |
dataset=dict( | |
type=dataset_type, | |
data_root='data/imagenet', | |
ann_file='meta/val.txt', | |
data_prefix='val', | |
pipeline=test_pipeline), | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
) | |
val_evaluator = dict(type='Accuracy', topk=(1, 5)) | |
# If you want standard test, please manually configure the test dataset | |
test_dataloader = val_dataloader | |
test_evaluator = val_evaluator | |