Spaces:
Runtime error
Runtime error
# dataset settings | |
dataset_type = 'ImageNet' | |
img_norm_cfg = dict( | |
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255], | |
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255], | |
to_rgb=True) | |
image_size = 224 | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='RandomResizedCrop', | |
size=image_size, | |
backend='pillow', | |
interpolation='bicubic'), | |
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), | |
# dict( | |
# type='RandAugment', | |
# policies={{_base_.rand_increasing_policies}}, | |
# num_policies=2, | |
# total_level=10, | |
# magnitude_level=9, | |
# magnitude_std=0.5, | |
# hparams=dict( | |
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]], | |
# interpolation='bicubic')), | |
dict( | |
type='RandomErasing', | |
erase_prob=0.25, | |
mode='rand', | |
min_area_ratio=0.02, | |
max_area_ratio=1 / 3, | |
fill_color=img_norm_cfg['mean'][::-1], | |
fill_std=img_norm_cfg['std'][::-1]), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='ToTensor', keys=['gt_label']), | |
dict(type='Collect', keys=['img', 'gt_label']) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='Resize', | |
size=(image_size, -1), | |
backend='pillow', | |
interpolation='bicubic'), | |
dict(type='CenterCrop', crop_size=image_size), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']) | |
] | |
data = dict( | |
samples_per_gpu=64, | |
workers_per_gpu=8, | |
train=dict( | |
type=dataset_type, | |
data_prefix='data/imagenet/train', | |
pipeline=train_pipeline), | |
val=dict( | |
type=dataset_type, | |
data_prefix='data/imagenet/val', | |
ann_file='data/imagenet/meta/val.txt', | |
pipeline=test_pipeline), | |
test=dict( | |
# replace `data/val` with `data/test` for standard test | |
type=dataset_type, | |
data_prefix='data/imagenet/val', | |
ann_file='data/imagenet/meta/val.txt', | |
pipeline=test_pipeline)) | |
evaluation = dict(interval=10, metric='accuracy') | |