ai-photo-gallery / configs /_base_ /datasets /cityscapes_detection.py
KyanChen's picture
init
f549064
raw
history blame
2.02 kB
# dataset settings
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=[(2048, 800), (2048, 1024)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
# If you don't have a gt annotation, delete the pipeline
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type='RepeatDataset',
times=8,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instancesonly_filtered_gtFine_train.json',
data_prefix=dict(img='leftImg8bit/train/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instancesonly_filtered_gtFine_val.json',
data_prefix=dict(img='leftImg8bit/val/'),
test_mode=True,
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json',
metric='bbox')
test_evaluator = val_evaluator