KyanChen's picture
init
f549064
raw
history blame
4.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmengine.model import BaseModule
from mmdet.registry import MODELS
@MODELS.register_module()
class SSDNeck(BaseModule):
"""Extra layers of SSD backbone to generate multi-scale feature maps.
Args:
in_channels (Sequence[int]): Number of input channels per scale.
out_channels (Sequence[int]): Number of output channels per scale.
level_strides (Sequence[int]): Stride of 3x3 conv per level.
level_paddings (Sequence[int]): Padding size of 3x3 conv per level.
l2_norm_scale (float|None): L2 normalization layer init scale.
If None, not use L2 normalization on the first input feature.
last_kernel_size (int): Kernel size of the last conv layer.
Default: 3.
use_depthwise (bool): Whether to use DepthwiseSeparableConv.
Default: False.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: None.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
out_channels,
level_strides,
level_paddings,
l2_norm_scale=20.,
last_kernel_size=3,
use_depthwise=False,
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
init_cfg=[
dict(
type='Xavier', distribution='uniform',
layer='Conv2d'),
dict(type='Constant', val=1, layer='BatchNorm2d'),
]):
super(SSDNeck, self).__init__(init_cfg)
assert len(out_channels) > len(in_channels)
assert len(out_channels) - len(in_channels) == len(level_strides)
assert len(level_strides) == len(level_paddings)
assert in_channels == out_channels[:len(in_channels)]
if l2_norm_scale:
self.l2_norm = L2Norm(in_channels[0], l2_norm_scale)
self.init_cfg += [
dict(
type='Constant',
val=self.l2_norm.scale,
override=dict(name='l2_norm'))
]
self.extra_layers = nn.ModuleList()
extra_layer_channels = out_channels[len(in_channels):]
second_conv = DepthwiseSeparableConvModule if \
use_depthwise else ConvModule
for i, (out_channel, stride, padding) in enumerate(
zip(extra_layer_channels, level_strides, level_paddings)):
kernel_size = last_kernel_size \
if i == len(extra_layer_channels) - 1 else 3
per_lvl_convs = nn.Sequential(
ConvModule(
out_channels[len(in_channels) - 1 + i],
out_channel // 2,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
second_conv(
out_channel // 2,
out_channel,
kernel_size,
stride=stride,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.extra_layers.append(per_lvl_convs)
def forward(self, inputs):
"""Forward function."""
outs = [feat for feat in inputs]
if hasattr(self, 'l2_norm'):
outs[0] = self.l2_norm(outs[0])
feat = outs[-1]
for layer in self.extra_layers:
feat = layer(feat)
outs.append(feat)
return tuple(outs)
class L2Norm(nn.Module):
def __init__(self, n_dims, scale=20., eps=1e-10):
"""L2 normalization layer.
Args:
n_dims (int): Number of dimensions to be normalized
scale (float, optional): Defaults to 20..
eps (float, optional): Used to avoid division by zero.
Defaults to 1e-10.
"""
super(L2Norm, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, x):
"""Forward function."""
# normalization layer convert to FP32 in FP16 training
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)