KyanChen's picture
init
f549064
raw
history blame
8.08 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from collections import OrderedDict
from typing import List, Optional, Sequence, Union
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmdet.registry import METRICS
from ..functional import eval_map, eval_recalls
@METRICS.register_module()
class VOCMetric(BaseMetric):
"""Pascal VOC evaluation metric.
Args:
iou_thrs (float or List[float]): IoU threshold. Defaults to 0.5.
scale_ranges (List[tuple], optional): Scale ranges for evaluating
mAP. If not specified, all bounding boxes would be included in
evaluation. Defaults to None.
metric (str | list[str]): Metrics to be evaluated. Options are
'mAP', 'recall'. If is list, the first setting in the list will
be used to evaluate metric.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
eval_mode (str): 'area' or '11points', 'area' means calculating the
area under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1].
The PASCAL VOC2007 defaults to use '11points', while PASCAL
VOC2012 defaults to use 'area'.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
"""
default_prefix: Optional[str] = 'pascal_voc'
def __init__(self,
iou_thrs: Union[float, List[float]] = 0.5,
scale_ranges: Optional[List[tuple]] = None,
metric: Union[str, List[str]] = 'mAP',
proposal_nums: Sequence[int] = (100, 300, 1000),
eval_mode: str = '11points',
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.iou_thrs = [iou_thrs] if isinstance(iou_thrs, float) \
else iou_thrs
self.scale_ranges = scale_ranges
# voc evaluation metrics
if not isinstance(metric, str):
assert len(metric) == 1
metric = metric[0]
allowed_metrics = ['recall', 'mAP']
if metric not in allowed_metrics:
raise KeyError(
f"metric should be one of 'recall', 'mAP', but got {metric}.")
self.metric = metric
self.proposal_nums = proposal_nums
assert eval_mode in ['area', '11points'], \
'Unrecognized mode, only "area" and "11points" are supported'
self.eval_mode = eval_mode
# TODO: data_batch is no longer needed, consider adjusting the
# parameter position
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of data samples that
contain annotations and predictions.
"""
for data_sample in data_samples:
gt = copy.deepcopy(data_sample)
# TODO: Need to refactor to support LoadAnnotations
gt_instances = gt['gt_instances']
gt_ignore_instances = gt['ignored_instances']
ann = dict(
labels=gt_instances['labels'].cpu().numpy(),
bboxes=gt_instances['bboxes'].cpu().numpy(),
bboxes_ignore=gt_ignore_instances['bboxes'].cpu().numpy(),
labels_ignore=gt_ignore_instances['labels'].cpu().numpy())
pred = data_sample['pred_instances']
pred_bboxes = pred['bboxes'].cpu().numpy()
pred_scores = pred['scores'].cpu().numpy()
pred_labels = pred['labels'].cpu().numpy()
dets = []
for label in range(len(self.dataset_meta['classes'])):
index = np.where(pred_labels == label)[0]
pred_bbox_scores = np.hstack(
[pred_bboxes[index], pred_scores[index].reshape((-1, 1))])
dets.append(pred_bbox_scores)
self.results.append((ann, dets))
def compute_metrics(self, results: list) -> dict:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
gts, preds = zip(*results)
eval_results = OrderedDict()
if self.metric == 'mAP':
assert isinstance(self.iou_thrs, list)
dataset_type = self.dataset_meta.get('dataset_type')
if dataset_type in ['VOC2007', 'VOC2012']:
dataset_name = 'voc'
if dataset_type == 'VOC2007' and self.eval_mode != '11points':
warnings.warn('Pascal VOC2007 uses `11points` as default '
'evaluate mode, but you are using '
f'{self.eval_mode}.')
elif dataset_type == 'VOC2012' and self.eval_mode != 'area':
warnings.warn('Pascal VOC2012 uses `area` as default '
'evaluate mode, but you are using '
f'{self.eval_mode}.')
else:
dataset_name = self.dataset_meta['classes']
mean_aps = []
for iou_thr in self.iou_thrs:
logger.info(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}')
# Follow the official implementation,
# http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar
# we should use the legacy coordinate system in mmdet 1.x,
# which means w, h should be computed as 'x2 - x1 + 1` and
# `y2 - y1 + 1`
mean_ap, _ = eval_map(
preds,
gts,
scale_ranges=self.scale_ranges,
iou_thr=iou_thr,
dataset=dataset_name,
logger=logger,
eval_mode=self.eval_mode,
use_legacy_coordinate=True)
mean_aps.append(mean_ap)
eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
eval_results.move_to_end('mAP', last=False)
elif self.metric == 'recall':
# TODO: Currently not checked.
gt_bboxes = [ann['bboxes'] for ann in self.annotations]
recalls = eval_recalls(
gt_bboxes,
results,
self.proposal_nums,
self.iou_thrs,
logger=logger,
use_legacy_coordinate=True)
for i, num in enumerate(self.proposal_nums):
for j, iou_thr in enumerate(self.iou_thrs):
eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j]
if recalls.shape[1] > 1:
ar = recalls.mean(axis=1)
for i, num in enumerate(self.proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
return eval_results