KyanChen's picture
init
f549064
raw
history blame
15 kB
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import os.path as osp
import tempfile
import warnings
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
from mmengine.logging import MMLogger
from terminaltables import AsciiTable
from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
from ..functional import eval_recalls
from .coco_metric import CocoMetric
try:
import lvis
if getattr(lvis, '__version__', '0') >= '10.5.3':
warnings.warn(
'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501
UserWarning)
from lvis import LVIS, LVISEval, LVISResults
except ImportError:
lvis = None
LVISEval = None
LVISResults = None
@METRICS.register_module()
class LVISMetric(CocoMetric):
"""LVIS evaluation metric.
Args:
ann_file (str, optional): Path to the coco format annotation file.
If not specified, ground truth annotations from the dataset will
be converted to coco format. Defaults to None.
metric (str | List[str]): Metrics to be evaluated. Valid metrics
include 'bbox', 'segm', 'proposal', and 'proposal_fast'.
Defaults to 'bbox'.
classwise (bool): Whether to evaluate the metric class-wise.
Defaults to False.
proposal_nums (Sequence[int]): Numbers of proposals to be evaluated.
Defaults to (100, 300, 1000).
iou_thrs (float | List[float], optional): IoU threshold to compute AP
and AR. If not specified, IoUs from 0.5 to 0.95 will be used.
Defaults to None.
metric_items (List[str], optional): Metric result names to be
recorded in the evaluation result. Defaults to None.
format_only (bool): Format the output results without perform
evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.
outfile_prefix (str, optional): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Defaults to None.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
"""
default_prefix: Optional[str] = 'lvis'
def __init__(self,
ann_file: Optional[str] = None,
metric: Union[str, List[str]] = 'bbox',
classwise: bool = False,
proposal_nums: Sequence[int] = (100, 300, 1000),
iou_thrs: Optional[Union[float, Sequence[float]]] = None,
metric_items: Optional[Sequence[str]] = None,
format_only: bool = False,
outfile_prefix: Optional[str] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
if lvis is None:
raise RuntimeError(
'Package lvis is not installed. Please run "pip install '
'git+https://github.com/lvis-dataset/lvis-api.git".')
super().__init__(collect_device=collect_device, prefix=prefix)
# coco evaluation metrics
self.metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
for metric in self.metrics:
if metric not in allowed_metrics:
raise KeyError(
"metric should be one of 'bbox', 'segm', 'proposal', "
f"'proposal_fast', but got {metric}.")
# do class wise evaluation, default False
self.classwise = classwise
# proposal_nums used to compute recall or precision.
self.proposal_nums = list(proposal_nums)
# iou_thrs used to compute recall or precision.
if iou_thrs is None:
iou_thrs = np.linspace(
.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
self.iou_thrs = iou_thrs
self.metric_items = metric_items
self.format_only = format_only
if self.format_only:
assert outfile_prefix is not None, 'outfile_prefix must be not'
'None when format_only is True, otherwise the result files will'
'be saved to a temp directory which will be cleaned up at the end.'
self.outfile_prefix = outfile_prefix
# if ann_file is not specified,
# initialize lvis api with the converted dataset
self._lvis_api = LVIS(ann_file) if ann_file else None
# handle dataset lazy init
self.cat_ids = None
self.img_ids = None
def fast_eval_recall(self,
results: List[dict],
proposal_nums: Sequence[int],
iou_thrs: Sequence[float],
logger: Optional[MMLogger] = None) -> np.ndarray:
"""Evaluate proposal recall with LVIS's fast_eval_recall.
Args:
results (List[dict]): Results of the dataset.
proposal_nums (Sequence[int]): Proposal numbers used for
evaluation.
iou_thrs (Sequence[float]): IoU thresholds used for evaluation.
logger (MMLogger, optional): Logger used for logging the recall
summary.
Returns:
np.ndarray: Averaged recall results.
"""
gt_bboxes = []
pred_bboxes = [result['bboxes'] for result in results]
for i in range(len(self.img_ids)):
ann_ids = self._lvis_api.get_ann_ids(img_ids=[self.img_ids[i]])
ann_info = self._lvis_api.load_anns(ann_ids)
if len(ann_info) == 0:
gt_bboxes.append(np.zeros((0, 4)))
continue
bboxes = []
for ann in ann_info:
x1, y1, w, h = ann['bbox']
bboxes.append([x1, y1, x1 + w, y1 + h])
bboxes = np.array(bboxes, dtype=np.float32)
if bboxes.shape[0] == 0:
bboxes = np.zeros((0, 4))
gt_bboxes.append(bboxes)
recalls = eval_recalls(
gt_bboxes, pred_bboxes, proposal_nums, iou_thrs, logger=logger)
ar = recalls.mean(axis=1)
return ar
# TODO: data_batch is no longer needed, consider adjusting the
# parameter position
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of data samples that
contain annotations and predictions.
"""
for data_sample in data_samples:
result = dict()
pred = data_sample['pred_instances']
result['img_id'] = data_sample['img_id']
result['bboxes'] = pred['bboxes'].cpu().numpy()
result['scores'] = pred['scores'].cpu().numpy()
result['labels'] = pred['labels'].cpu().numpy()
# encode mask to RLE
if 'masks' in pred:
result['masks'] = encode_mask_results(
pred['masks'].detach().cpu().numpy())
# some detectors use different scores for bbox and mask
if 'mask_scores' in pred:
result['mask_scores'] = pred['mask_scores'].cpu().numpy()
# parse gt
gt = dict()
gt['width'] = data_sample['ori_shape'][1]
gt['height'] = data_sample['ori_shape'][0]
gt['img_id'] = data_sample['img_id']
if self._lvis_api is None:
# TODO: Need to refactor to support LoadAnnotations
assert 'instances' in data_sample, \
'ground truth is required for evaluation when ' \
'`ann_file` is not provided'
gt['anns'] = data_sample['instances']
# add converted result to the results list
self.results.append((gt, result))
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# split gt and prediction list
gts, preds = zip(*results)
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
if self._lvis_api is None:
# use converted gt json file to initialize coco api
logger.info('Converting ground truth to coco format...')
coco_json_path = self.gt_to_coco_json(
gt_dicts=gts, outfile_prefix=outfile_prefix)
self._lvis_api = LVIS(coco_json_path)
# handle lazy init
if self.cat_ids is None:
self.cat_ids = self._lvis_api.get_cat_ids()
if self.img_ids is None:
self.img_ids = self._lvis_api.get_img_ids()
# convert predictions to coco format and dump to json file
result_files = self.results2json(preds, outfile_prefix)
eval_results = OrderedDict()
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return eval_results
lvis_gt = self._lvis_api
for metric in self.metrics:
logger.info(f'Evaluating {metric}...')
# TODO: May refactor fast_eval_recall to an independent metric?
# fast eval recall
if metric == 'proposal_fast':
ar = self.fast_eval_recall(
preds, self.proposal_nums, self.iou_thrs, logger=logger)
log_msg = []
for i, num in enumerate(self.proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
log_msg = ''.join(log_msg)
logger.info(log_msg)
continue
try:
lvis_dt = LVISResults(lvis_gt, result_files[metric])
except IndexError:
logger.info(
'The testing results of the whole dataset is empty.')
break
iou_type = 'bbox' if metric == 'proposal' else metric
lvis_eval = LVISEval(lvis_gt, lvis_dt, iou_type)
lvis_eval.params.imgIds = self.img_ids
metric_items = self.metric_items
if metric == 'proposal':
lvis_eval.params.useCats = 0
lvis_eval.params.maxDets = list(self.proposal_nums)
lvis_eval.evaluate()
lvis_eval.accumulate()
lvis_eval.summarize()
if metric_items is None:
metric_items = ['AR@300', 'ARs@300', 'ARm@300', 'ARl@300']
for k, v in lvis_eval.get_results().items():
if k in metric_items:
val = float('{:.3f}'.format(float(v)))
eval_results[k] = val
else:
lvis_eval.evaluate()
lvis_eval.accumulate()
lvis_eval.summarize()
lvis_results = lvis_eval.get_results()
if self.classwise: # Compute per-category AP
# Compute per-category AP
# from https://github.com/facebookresearch/detectron2/
precisions = lvis_eval.eval['precision']
# precision: (iou, recall, cls, area range, max dets)
assert len(self.cat_ids) == precisions.shape[2]
results_per_category = []
for idx, catId in enumerate(self.cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
# the dimensions of precisions are
# [num_thrs, num_recalls, num_cats, num_area_rngs]
nm = self._lvis_api.load_cats([catId])[0]
precision = precisions[:, :, idx, 0]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(f'{nm["name"]}', f'{float(ap):0.3f}'))
eval_results[f'{nm["name"]}_precision'] = round(ap, 3)
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(
itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(*[
results_flatten[i::num_columns]
for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('\n' + table.table)
if metric_items is None:
metric_items = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'APr',
'APc', 'APf'
]
for k, v in lvis_results.items():
if k in metric_items:
key = '{}_{}'.format(metric, k)
val = float('{:.3f}'.format(float(v)))
eval_results[key] = val
lvis_eval.print_results()
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results