KyanChen's picture
init
f549064
raw
history blame
32.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import json
import os.path as osp
import tempfile
from collections import OrderedDict
from multiprocessing import Process, Queue
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import maximum_bipartite_matching
from mmdet.evaluation.functional.bbox_overlaps import bbox_overlaps
from mmdet.registry import METRICS
PERSON_CLASSES = ['background', 'person']
@METRICS.register_module()
class CrowdHumanMetric(BaseMetric):
"""CrowdHuman evaluation metric.
Evaluate Average Precision (AP), Miss Rate (MR) and Jaccard Index (JI)
for detection tasks.
Args:
ann_file (str): Path to the annotation file.
metric (str | List[str]): Metrics to be evaluated. Valid metrics
include 'AP', 'MR' and 'JI'. Defaults to 'AP'.
format_only (bool): Format the output results without perform
evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.
outfile_prefix (str, optional): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Defaults to None.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmengine.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
eval_mode (int): Select the mode of evaluate. Valid mode include
0(just body box), 1(just head box) and 2(both of them).
Defaults to 0.
iou_thres (float): IoU threshold. Defaults to 0.5.
compare_matching_method (str, optional): Matching method to compare
the detection results with the ground_truth when compute 'AP'
and 'MR'.Valid method include VOC and None(CALTECH). Default to
None.
mr_ref (str): Different parameter selection to calculate MR. Valid
ref include CALTECH_-2 and CALTECH_-4. Defaults to CALTECH_-2.
num_ji_process (int): The number of processes to evaluation JI.
Defaults to 10.
"""
default_prefix: Optional[str] = 'crowd_human'
def __init__(self,
ann_file: str,
metric: Union[str, List[str]] = ['AP', 'MR', 'JI'],
format_only: bool = False,
outfile_prefix: Optional[str] = None,
file_client_args: dict = dict(backend='disk'),
collect_device: str = 'cpu',
prefix: Optional[str] = None,
eval_mode: int = 0,
iou_thres: float = 0.5,
compare_matching_method: Optional[str] = None,
mr_ref: str = 'CALTECH_-2',
num_ji_process: int = 10) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.ann_file = ann_file
# crowdhuman evaluation metrics
self.metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['MR', 'AP', 'JI']
for metric in self.metrics:
if metric not in allowed_metrics:
raise KeyError(f"metric should be one of 'MR', 'AP', 'JI',"
f'but got {metric}.')
self.format_only = format_only
if self.format_only:
assert outfile_prefix is not None, 'outfile_prefix must be not'
'None when format_only is True, otherwise the result files will'
'be saved to a temp directory which will be cleaned up at the end.'
self.outfile_prefix = outfile_prefix
self.file_client_args = file_client_args
self.file_client = FileClient(**file_client_args)
assert eval_mode in [0, 1, 2], \
"Unknown eval mode. mr_ref should be one of '0', '1', '2'."
assert compare_matching_method is None or \
compare_matching_method == 'VOC', \
'The alternative compare_matching_method is VOC.' \
'This parameter defaults to CALTECH(None)'
assert mr_ref == 'CALTECH_-2' or mr_ref == 'CALTECH_-4', \
"mr_ref should be one of 'CALTECH_-2', 'CALTECH_-4'."
self.eval_mode = eval_mode
self.iou_thres = iou_thres
self.compare_matching_method = compare_matching_method
self.mr_ref = mr_ref
self.num_ji_process = num_ji_process
@staticmethod
def results2json(results: Sequence[dict], outfile_prefix: str) -> str:
"""Dump the detection results to a json file."""
result_file_path = f'{outfile_prefix}.json'
bbox_json_results = []
for i, result in enumerate(results):
ann, pred = result
dump_dict = dict()
dump_dict['ID'] = ann['ID']
dump_dict['width'] = ann['width']
dump_dict['height'] = ann['height']
dtboxes = []
bboxes = pred.tolist()
for _, single_bbox in enumerate(bboxes):
temp_dict = dict()
x1, y1, x2, y2, score = single_bbox
temp_dict['box'] = [x1, y1, x2 - x1, y2 - y1]
temp_dict['score'] = score
temp_dict['tag'] = 1
dtboxes.append(temp_dict)
dump_dict['dtboxes'] = dtboxes
bbox_json_results.append(dump_dict)
dump(bbox_json_results, result_file_path)
return result_file_path
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of data samples that
contain annotations and predictions.
"""
for data_sample in data_samples:
ann = dict()
ann['ID'] = data_sample['img_id']
ann['width'] = data_sample['ori_shape'][1]
ann['height'] = data_sample['ori_shape'][0]
pred_bboxes = data_sample['pred_instances']['bboxes'].cpu().numpy()
pred_scores = data_sample['pred_instances']['scores'].cpu().numpy()
pred_bbox_scores = np.hstack(
[pred_bboxes, pred_scores.reshape((-1, 1))])
self.results.append((ann, pred_bbox_scores))
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
eval_results(Dict[str, float]): The computed metrics.
The keys are the names of the metrics, and the values
are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'result')
else:
outfile_prefix = self.outfile_prefix
# convert predictions to coco format and dump to json file
result_file = self.results2json(results, outfile_prefix)
eval_results = OrderedDict()
if self.format_only:
logger.info(f'results are saved in {osp.dirname(outfile_prefix)}')
return eval_results
# load evaluation samples
eval_samples = self.load_eval_samples(result_file)
if 'AP' in self.metrics or 'MR' in self.metrics:
score_list = self.compare(eval_samples)
gt_num = sum([eval_samples[i].gt_num for i in eval_samples])
ign_num = sum([eval_samples[i].ign_num for i in eval_samples])
gt_num = gt_num - ign_num
img_num = len(eval_samples)
for metric in self.metrics:
logger.info(f'Evaluating {metric}...')
if metric == 'AP':
AP = self.eval_ap(score_list, gt_num, img_num)
eval_results['mAP'] = float(f'{round(AP, 4)}')
if metric == 'MR':
MR = self.eval_mr(score_list, gt_num, img_num)
eval_results['mMR'] = float(f'{round(MR, 4)}')
if metric == 'JI':
JI = self.eval_ji(eval_samples)
eval_results['JI'] = float(f'{round(JI, 4)}')
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
def load_eval_samples(self, result_file):
"""Load data from annotations file and detection results.
Args:
result_file (str): The file path of the saved detection results.
Returns:
Dict[Image]: The detection result packaged by Image
"""
gt_str = self.file_client.get_text(self.ann_file).strip().split('\n')
gt_records = [json.loads(line) for line in gt_str]
pred_records = load(result_file)
eval_samples = dict()
for gt_record, pred_record in zip(gt_records, pred_records):
assert gt_record['ID'] == pred_record['ID'], \
'please set val_dataloader.sampler.shuffle=False and try again'
eval_samples[pred_record['ID']] = Image(self.eval_mode)
eval_samples[pred_record['ID']].load(gt_record, 'box', None,
PERSON_CLASSES, True)
eval_samples[pred_record['ID']].load(pred_record, 'box', None,
PERSON_CLASSES, False)
eval_samples[pred_record['ID']].clip_all_boader()
return eval_samples
def compare(self, samples):
"""Match the detection results with the ground_truth.
Args:
samples (dict[Image]): The detection result packaged by Image.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
score_list = list()
for id in samples:
if self.compare_matching_method == 'VOC':
result = samples[id].compare_voc(self.iou_thres)
else:
result = samples[id].compare_caltech(self.iou_thres)
score_list.extend(result)
# In the descending sort of dtbox score.
score_list.sort(key=lambda x: x[0][-1], reverse=True)
return score_list
@staticmethod
def eval_ap(score_list, gt_num, img_num):
"""Evaluate by average precision.
Args:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
gt_num(int): The number of gt boxes in the entire dataset.
img_num(int): The number of images in the entire dataset.
Returns:
ap(float): result of average precision.
"""
# calculate general ap score
def _calculate_map(_recall, _precision):
assert len(_recall) == len(_precision)
area = 0
for k in range(1, len(_recall)):
delta_h = (_precision[k - 1] + _precision[k]) / 2
delta_w = _recall[k] - _recall[k - 1]
area += delta_w * delta_h
return area
tp, fp = 0.0, 0.0
rpX, rpY = list(), list()
fpn = []
recalln = []
thr = []
fppi = []
for i, item in enumerate(score_list):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
fn = gt_num - tp
recall = tp / (tp + fn)
precision = tp / (tp + fp)
rpX.append(recall)
rpY.append(precision)
fpn.append(fp)
recalln.append(tp)
thr.append(item[0][-1])
fppi.append(fp / img_num)
ap = _calculate_map(rpX, rpY)
return ap
def eval_mr(self, score_list, gt_num, img_num):
"""Evaluate by Caltech-style log-average miss rate.
Args:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
gt_num(int): The number of gt boxes in the entire dataset.
img_num(int): The number of image in the entire dataset.
Returns:
mr(float): result of miss rate.
"""
# find greater_than
def _find_gt(lst, target):
for idx, _item in enumerate(lst):
if _item >= target:
return idx
return len(lst) - 1
if self.mr_ref == 'CALTECH_-2':
# CALTECH_MRREF_2: anchor points (from 10^-2 to 1) as in
# P.Dollar's paper
ref = [
0.0100, 0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162,
0.5623, 1.000
]
else:
# CALTECH_MRREF_4: anchor points (from 10^-4 to 1) as in
# S.Zhang's paper
ref = [
0.0001, 0.0003, 0.00100, 0.0032, 0.0100, 0.0316, 0.1000,
0.3162, 1.000
]
tp, fp = 0.0, 0.0
fppiX, fppiY = list(), list()
for i, item in enumerate(score_list):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
fn = gt_num - tp
recall = tp / (tp + fn)
missrate = 1.0 - recall
fppi = fp / img_num
fppiX.append(fppi)
fppiY.append(missrate)
score = list()
for pos in ref:
argmin = _find_gt(fppiX, pos)
if argmin >= 0:
score.append(fppiY[argmin])
score = np.array(score)
mr = np.exp(np.log(score).mean())
return mr
def eval_ji(self, samples):
"""Evaluate by JI using multi_process.
Args:
samples(Dict[str, Image]): The detection result packaged by Image.
Returns:
ji(float): result of jaccard index.
"""
import math
res_line = []
res_ji = []
for i in range(10):
score_thr = 1e-1 * i
total = len(samples)
stride = math.ceil(total / self.num_ji_process)
result_queue = Queue(10000)
results, procs = [], []
records = list(samples.items())
for i in range(self.num_ji_process):
start = i * stride
end = np.min([start + stride, total])
sample_data = dict(records[start:end])
p = Process(
target=self.compute_ji_with_ignore,
args=(result_queue, sample_data, score_thr))
p.start()
procs.append(p)
for i in range(total):
t = result_queue.get()
results.append(t)
for p in procs:
p.join()
line, mean_ratio = self.gather(results)
line = 'score_thr:{:.1f}, {}'.format(score_thr, line)
res_line.append(line)
res_ji.append(mean_ratio)
return max(res_ji)
def compute_ji_with_ignore(self, result_queue, dt_result, score_thr):
"""Compute JI with ignore.
Args:
result_queue(Queue): The Queue for save compute result when
multi_process.
dt_result(dict[Image]): Detection result packaged by Image.
score_thr(float): The threshold of detection score.
Returns:
dict: compute result.
"""
for ID, record in dt_result.items():
gt_boxes = record.gt_boxes
dt_boxes = record.dt_boxes
keep = dt_boxes[:, -1] > score_thr
dt_boxes = dt_boxes[keep][:, :-1]
gt_tag = np.array(gt_boxes[:, -1] != -1)
matches = self.compute_ji_matching(dt_boxes, gt_boxes[gt_tag, :4])
# get the unmatched_indices
matched_indices = np.array([j for (j, _) in matches])
unmatched_indices = list(
set(np.arange(dt_boxes.shape[0])) - set(matched_indices))
num_ignore_dt = self.get_ignores(dt_boxes[unmatched_indices],
gt_boxes[~gt_tag, :4])
matched_indices = np.array([j for (_, j) in matches])
unmatched_indices = list(
set(np.arange(gt_boxes[gt_tag].shape[0])) -
set(matched_indices))
num_ignore_gt = self.get_ignores(
gt_boxes[gt_tag][unmatched_indices], gt_boxes[~gt_tag, :4])
# compute results
eps = 1e-6
k = len(matches)
m = gt_tag.sum() - num_ignore_gt
n = dt_boxes.shape[0] - num_ignore_dt
ratio = k / (m + n - k + eps)
recall = k / (m + eps)
cover = k / (n + eps)
noise = 1 - cover
result_dict = dict(
ratio=ratio,
recall=recall,
cover=cover,
noise=noise,
k=k,
m=m,
n=n)
result_queue.put_nowait(result_dict)
@staticmethod
def gather(results):
"""Integrate test results."""
assert len(results)
img_num = 0
for result in results:
if result['n'] != 0 or result['m'] != 0:
img_num += 1
mean_ratio = np.sum([rb['ratio'] for rb in results]) / img_num
valids = np.sum([rb['k'] for rb in results])
total = np.sum([rb['n'] for rb in results])
gtn = np.sum([rb['m'] for rb in results])
line = 'mean_ratio:{:.4f}, valids:{}, total:{}, gtn:{}'\
.format(mean_ratio, valids, total, gtn)
return line, mean_ratio
def compute_ji_matching(self, dt_boxes, gt_boxes):
"""Match the annotation box for each detection box.
Args:
dt_boxes(ndarray): Detection boxes.
gt_boxes(ndarray): Ground_truth boxes.
Returns:
matches_(list[tuple[int, int]]): Match result.
"""
assert dt_boxes.shape[-1] > 3 and gt_boxes.shape[-1] > 3
if dt_boxes.shape[0] < 1 or gt_boxes.shape[0] < 1:
return list()
ious = bbox_overlaps(dt_boxes, gt_boxes, mode='iou')
input_ = copy.deepcopy(ious)
input_[input_ < self.iou_thres] = 0
match_scipy = maximum_bipartite_matching(
csr_matrix(input_), perm_type='column')
matches_ = []
for i in range(len(match_scipy)):
if match_scipy[i] != -1:
matches_.append((i, int(match_scipy[i])))
return matches_
def get_ignores(self, dt_boxes, gt_boxes):
"""Get the number of ignore bboxes."""
if gt_boxes.size:
ioas = bbox_overlaps(dt_boxes, gt_boxes, mode='iof')
ioas = np.max(ioas, axis=1)
rows = np.where(ioas > self.iou_thres)[0]
return len(rows)
else:
return 0
class Image(object):
"""Data structure for evaluation of CrowdHuman.
Note:
This implementation is modified from https://github.com/Purkialo/
CrowdDet/blob/master/lib/evaluate/APMRToolkits/image.py
Args:
mode (int): Select the mode of evaluate. Valid mode include
0(just body box), 1(just head box) and 2(both of them).
Defaults to 0.
"""
def __init__(self, mode):
self.ID = None
self.width = None
self.height = None
self.dt_boxes = None
self.gt_boxes = None
self.eval_mode = mode
self.ign_num = None
self.gt_num = None
self.dt_num = None
def load(self, record, body_key, head_key, class_names, gt_flag):
"""Loading information for evaluation.
Args:
record (dict): Label information or test results.
The format might look something like this:
{
'ID': '273271,c9db000d5146c15',
'gtboxes': [
{'fbox': [72, 202, 163, 503], 'tag': 'person', ...},
{'fbox': [199, 180, 144, 499], 'tag': 'person', ...},
...
]
}
or:
{
'ID': '273271,c9db000d5146c15',
'width': 800,
'height': 1067,
'dtboxes': [
{
'box': [306.22, 205.95, 164.05, 394.04],
'score': 0.99,
'tag': 1
},
{
'box': [403.60, 178.66, 157.15, 421.33],
'score': 0.99,
'tag': 1
},
...
]
}
body_key (str, None): key of detection body box.
Valid when loading detection results and self.eval_mode!=1.
head_key (str, None): key of detection head box.
Valid when loading detection results and self.eval_mode!=0.
class_names (list[str]):class names of data set.
Defaults to ['background', 'person'].
gt_flag (bool): Indicate whether record is ground truth
or predicting the outcome.
"""
if 'ID' in record and self.ID is None:
self.ID = record['ID']
if 'width' in record and self.width is None:
self.width = record['width']
if 'height' in record and self.height is None:
self.height = record['height']
if gt_flag:
self.gt_num = len(record['gtboxes'])
body_bbox, head_bbox = self.load_gt_boxes(record, 'gtboxes',
class_names)
if self.eval_mode == 0:
self.gt_boxes = body_bbox
self.ign_num = (body_bbox[:, -1] == -1).sum()
elif self.eval_mode == 1:
self.gt_boxes = head_bbox
self.ign_num = (head_bbox[:, -1] == -1).sum()
else:
gt_tag = np.array([
body_bbox[i, -1] != -1 and head_bbox[i, -1] != -1
for i in range(len(body_bbox))
])
self.ign_num = (gt_tag == 0).sum()
self.gt_boxes = np.hstack(
(body_bbox[:, :-1], head_bbox[:, :-1],
gt_tag.reshape(-1, 1)))
if not gt_flag:
self.dt_num = len(record['dtboxes'])
if self.eval_mode == 0:
self.dt_boxes = self.load_det_boxes(record, 'dtboxes',
body_key, 'score')
elif self.eval_mode == 1:
self.dt_boxes = self.load_det_boxes(record, 'dtboxes',
head_key, 'score')
else:
body_dtboxes = self.load_det_boxes(record, 'dtboxes', body_key,
'score')
head_dtboxes = self.load_det_boxes(record, 'dtboxes', head_key,
'score')
self.dt_boxes = np.hstack((body_dtboxes, head_dtboxes))
@staticmethod
def load_gt_boxes(dict_input, key_name, class_names):
"""load ground_truth and transform [x, y, w, h] to [x1, y1, x2, y2]"""
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
head_bbox = []
body_bbox = []
for rb in dict_input[key_name]:
if rb['tag'] in class_names:
body_tag = class_names.index(rb['tag'])
head_tag = copy.deepcopy(body_tag)
else:
body_tag = -1
head_tag = -1
if 'extra' in rb:
if 'ignore' in rb['extra']:
if rb['extra']['ignore'] != 0:
body_tag = -1
head_tag = -1
if 'head_attr' in rb:
if 'ignore' in rb['head_attr']:
if rb['head_attr']['ignore'] != 0:
head_tag = -1
head_bbox.append(np.hstack((rb['hbox'], head_tag)))
body_bbox.append(np.hstack((rb['fbox'], body_tag)))
head_bbox = np.array(head_bbox)
head_bbox[:, 2:4] += head_bbox[:, :2]
body_bbox = np.array(body_bbox)
body_bbox[:, 2:4] += body_bbox[:, :2]
return body_bbox, head_bbox
@staticmethod
def load_det_boxes(dict_input, key_name, key_box, key_score, key_tag=None):
"""load detection boxes."""
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
else:
assert key_box in dict_input[key_name][0]
if key_score:
assert key_score in dict_input[key_name][0]
if key_tag:
assert key_tag in dict_input[key_name][0]
if key_score:
if key_tag:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_score], rb[key_tag]))
for rb in dict_input[key_name]
])
else:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_score]))
for rb in dict_input[key_name]
])
else:
if key_tag:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_tag]))
for rb in dict_input[key_name]
])
else:
bboxes = np.vstack(
[rb[key_box] for rb in dict_input[key_name]])
bboxes[:, 2:4] += bboxes[:, :2]
return bboxes
def clip_all_boader(self):
"""Make sure boxes are within the image range."""
def _clip_boundary(boxes, height, width):
assert boxes.shape[-1] >= 4
boxes[:, 0] = np.minimum(np.maximum(boxes[:, 0], 0), width - 1)
boxes[:, 1] = np.minimum(np.maximum(boxes[:, 1], 0), height - 1)
boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], width), 0)
boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], height), 0)
return boxes
assert self.dt_boxes.shape[-1] >= 4
assert self.gt_boxes.shape[-1] >= 4
assert self.width is not None and self.height is not None
if self.eval_mode == 2:
self.dt_boxes[:, :4] = _clip_boundary(self.dt_boxes[:, :4],
self.height, self.width)
self.gt_boxes[:, :4] = _clip_boundary(self.gt_boxes[:, :4],
self.height, self.width)
self.dt_boxes[:, 4:8] = _clip_boundary(self.dt_boxes[:, 4:8],
self.height, self.width)
self.gt_boxes[:, 4:8] = _clip_boundary(self.gt_boxes[:, 4:8],
self.height, self.width)
else:
self.dt_boxes = _clip_boundary(self.dt_boxes, self.height,
self.width)
self.gt_boxes = _clip_boundary(self.gt_boxes, self.height,
self.width)
def compare_voc(self, thres):
"""Match the detection results with the ground_truth by VOC.
Args:
thres (float): IOU threshold.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
if self.dt_boxes is None:
return list()
dtboxes = self.dt_boxes
gtboxes = self.gt_boxes if self.gt_boxes is not None else list()
dtboxes.sort(key=lambda x: x.score, reverse=True)
gtboxes.sort(key=lambda x: x.ign)
score_list = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
overlap = dt.iou(gt)
if overlap > maxiou:
maxiou = overlap
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos].ign == 0:
gtboxes[maxpos].matched = 1
dtboxes[i].matched = 1
score_list.append((dt, self.ID))
else:
dtboxes[i].matched = -1
else:
dtboxes[i].matched = 0
score_list.append((dt, self.ID))
return score_list
def compare_caltech(self, thres):
"""Match the detection results with the ground_truth by Caltech
matching strategy.
Args:
thres (float): IOU threshold.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
if self.dt_boxes is None or self.gt_boxes is None:
return list()
dtboxes = self.dt_boxes if self.dt_boxes is not None else list()
gtboxes = self.gt_boxes if self.gt_boxes is not None else list()
dt_matched = np.zeros(dtboxes.shape[0])
gt_matched = np.zeros(gtboxes.shape[0])
dtboxes = np.array(sorted(dtboxes, key=lambda x: x[-1], reverse=True))
gtboxes = np.array(sorted(gtboxes, key=lambda x: x[-1], reverse=True))
if len(dtboxes):
overlap_iou = bbox_overlaps(dtboxes, gtboxes, mode='iou')
overlap_ioa = bbox_overlaps(dtboxes, gtboxes, mode='iof')
else:
return list()
score_list = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
if gt_matched[j] == 1:
continue
if gt[-1] > 0:
overlap = overlap_iou[i][j]
if overlap > maxiou:
maxiou = overlap
maxpos = j
else:
if maxpos >= 0:
break
else:
overlap = overlap_ioa[i][j]
if overlap > thres:
maxiou = overlap
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos, -1] > 0:
gt_matched[maxpos] = 1
dt_matched[i] = 1
score_list.append((dt, 1, self.ID))
else:
dt_matched[i] = -1
else:
dt_matched[i] = 0
score_list.append((dt, 0, self.ID))
return score_list