Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import inspect | |
import math | |
from typing import List, Optional, Sequence, Tuple, Union | |
import cv2 | |
import mmcv | |
import numpy as np | |
from mmcv.image.geometric import _scale_size | |
from mmcv.transforms import BaseTransform | |
from mmcv.transforms import Pad as MMCV_Pad | |
from mmcv.transforms import RandomFlip as MMCV_RandomFlip | |
from mmcv.transforms import Resize as MMCV_Resize | |
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness | |
from mmengine.dataset import BaseDataset | |
from mmengine.utils import is_str | |
from numpy import random | |
from mmdet.registry import TRANSFORMS | |
from mmdet.structures.bbox import HorizontalBoxes, autocast_box_type | |
from mmdet.structures.mask import BitmapMasks, PolygonMasks | |
from mmdet.utils import log_img_scale | |
try: | |
from imagecorruptions import corrupt | |
except ImportError: | |
corrupt = None | |
try: | |
import albumentations | |
from albumentations import Compose | |
except ImportError: | |
albumentations = None | |
Compose = None | |
Number = Union[int, float] | |
class Resize(MMCV_Resize): | |
"""Resize images & bbox & seg. | |
This transform resizes the input image according to ``scale`` or | |
``scale_factor``. Bboxes, masks, and seg map are then resized | |
with the same scale factor. | |
if ``scale`` and ``scale_factor`` are both set, it will use ``scale`` to | |
resize. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes | |
- gt_masks | |
- gt_seg_map | |
Added Keys: | |
- scale | |
- scale_factor | |
- keep_ratio | |
- homography_matrix | |
Args: | |
scale (int or tuple): Images scales for resizing. Defaults to None | |
scale_factor (float or tuple[float]): Scale factors for resizing. | |
Defaults to None. | |
keep_ratio (bool): Whether to keep the aspect ratio when resizing the | |
image. Defaults to False. | |
clip_object_border (bool): Whether to clip the objects | |
outside the border of the image. In some dataset like MOT17, the gt | |
bboxes are allowed to cross the border of images. Therefore, we | |
don't need to clip the gt bboxes in these cases. Defaults to True. | |
backend (str): Image resize backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. Defaults | |
to 'cv2'. | |
interpolation (str): Interpolation method, accepted values are | |
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' | |
backend, "nearest", "bilinear" for 'pillow' backend. Defaults | |
to 'bilinear'. | |
""" | |
def _resize_masks(self, results: dict) -> None: | |
"""Resize masks with ``results['scale']``""" | |
if results.get('gt_masks', None) is not None: | |
if self.keep_ratio: | |
results['gt_masks'] = results['gt_masks'].rescale( | |
results['scale']) | |
else: | |
results['gt_masks'] = results['gt_masks'].resize( | |
results['img_shape']) | |
def _resize_bboxes(self, results: dict) -> None: | |
"""Resize bounding boxes with ``results['scale_factor']``.""" | |
if results.get('gt_bboxes', None) is not None: | |
results['gt_bboxes'].rescale_(results['scale_factor']) | |
if self.clip_object_border: | |
results['gt_bboxes'].clip_(results['img_shape']) | |
def _resize_seg(self, results: dict) -> None: | |
"""Resize semantic segmentation map with ``results['scale']``.""" | |
if results.get('gt_seg_map', None) is not None: | |
if self.keep_ratio: | |
gt_seg = mmcv.imrescale( | |
results['gt_seg_map'], | |
results['scale'], | |
interpolation='nearest', | |
backend=self.backend) | |
else: | |
gt_seg = mmcv.imresize( | |
results['gt_seg_map'], | |
results['scale'], | |
interpolation='nearest', | |
backend=self.backend) | |
results['gt_seg_map'] = gt_seg | |
def _record_homography_matrix(self, results: dict) -> None: | |
"""Record the homography matrix for the Resize.""" | |
w_scale, h_scale = results['scale_factor'] | |
homography_matrix = np.array( | |
[[w_scale, 0, 0], [0, h_scale, 0], [0, 0, 1]], dtype=np.float32) | |
if results.get('homography_matrix', None) is None: | |
results['homography_matrix'] = homography_matrix | |
else: | |
results['homography_matrix'] = homography_matrix @ results[ | |
'homography_matrix'] | |
def transform(self, results: dict) -> dict: | |
"""Transform function to resize images, bounding boxes and semantic | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map', | |
'scale', 'scale_factor', 'height', 'width', and 'keep_ratio' keys | |
are updated in result dict. | |
""" | |
if self.scale: | |
results['scale'] = self.scale | |
else: | |
img_shape = results['img'].shape[:2] | |
results['scale'] = _scale_size(img_shape[::-1], self.scale_factor) | |
self._resize_img(results) | |
self._resize_bboxes(results) | |
self._resize_masks(results) | |
self._resize_seg(results) | |
self._record_homography_matrix(results) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(scale={self.scale}, ' | |
repr_str += f'scale_factor={self.scale_factor}, ' | |
repr_str += f'keep_ratio={self.keep_ratio}, ' | |
repr_str += f'clip_object_border={self.clip_object_border}), ' | |
repr_str += f'backend={self.backend}), ' | |
repr_str += f'interpolation={self.interpolation})' | |
return repr_str | |
class FixShapeResize(Resize): | |
"""Resize images & bbox & seg to the specified size. | |
This transform resizes the input image according to ``width`` and | |
``height``. Bboxes, masks, and seg map are then resized | |
with the same parameters. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes | |
- gt_masks | |
- gt_seg_map | |
Added Keys: | |
- scale | |
- scale_factor | |
- keep_ratio | |
- homography_matrix | |
Args: | |
width (int): width for resizing. | |
height (int): height for resizing. | |
Defaults to None. | |
pad_val (Number | dict[str, Number], optional): Padding value for if | |
the pad_mode is "constant". If it is a single number, the value | |
to pad the image is the number and to pad the semantic | |
segmentation map is 255. If it is a dict, it should have the | |
following keys: | |
- img: The value to pad the image. | |
- seg: The value to pad the semantic segmentation map. | |
Defaults to dict(img=0, seg=255). | |
keep_ratio (bool): Whether to keep the aspect ratio when resizing the | |
image. Defaults to False. | |
clip_object_border (bool): Whether to clip the objects | |
outside the border of the image. In some dataset like MOT17, the gt | |
bboxes are allowed to cross the border of images. Therefore, we | |
don't need to clip the gt bboxes in these cases. Defaults to True. | |
backend (str): Image resize backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. Defaults | |
to 'cv2'. | |
interpolation (str): Interpolation method, accepted values are | |
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' | |
backend, "nearest", "bilinear" for 'pillow' backend. Defaults | |
to 'bilinear'. | |
""" | |
def __init__(self, | |
width: int, | |
height: int, | |
pad_val: Union[Number, dict] = dict(img=0, seg=255), | |
keep_ratio: bool = False, | |
clip_object_border: bool = True, | |
backend: str = 'cv2', | |
interpolation: str = 'bilinear') -> None: | |
assert width is not None and height is not None, ( | |
'`width` and' | |
'`height` can not be `None`') | |
self.width = width | |
self.height = height | |
self.scale = (width, height) | |
self.backend = backend | |
self.interpolation = interpolation | |
self.keep_ratio = keep_ratio | |
self.clip_object_border = clip_object_border | |
if keep_ratio is True: | |
# padding to the fixed size when keep_ratio=True | |
self.pad_transform = Pad(size=self.scale, pad_val=pad_val) | |
def transform(self, results: dict) -> dict: | |
"""Transform function to resize images, bounding boxes and semantic | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map', | |
'scale', 'scale_factor', 'height', 'width', and 'keep_ratio' keys | |
are updated in result dict. | |
""" | |
img = results['img'] | |
h, w = img.shape[:2] | |
if self.keep_ratio: | |
scale_factor = min(self.width / w, self.height / h) | |
results['scale_factor'] = (scale_factor, scale_factor) | |
real_w, real_h = int(w * float(scale_factor) + | |
0.5), int(h * float(scale_factor) + 0.5) | |
img, scale_factor = mmcv.imrescale( | |
results['img'], (real_w, real_h), | |
interpolation=self.interpolation, | |
return_scale=True, | |
backend=self.backend) | |
# the w_scale and h_scale has minor difference | |
# a real fix should be done in the mmcv.imrescale in the future | |
results['img'] = img | |
results['img_shape'] = img.shape[:2] | |
results['keep_ratio'] = self.keep_ratio | |
results['scale'] = (real_w, real_h) | |
else: | |
results['scale'] = (self.width, self.height) | |
results['scale_factor'] = (self.width / w, self.height / h) | |
super()._resize_img(results) | |
self._resize_bboxes(results) | |
self._resize_masks(results) | |
self._resize_seg(results) | |
self._record_homography_matrix(results) | |
if self.keep_ratio: | |
self.pad_transform(results) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(width={self.width}, height={self.height}, ' | |
repr_str += f'keep_ratio={self.keep_ratio}, ' | |
repr_str += f'clip_object_border={self.clip_object_border}), ' | |
repr_str += f'backend={self.backend}), ' | |
repr_str += f'interpolation={self.interpolation})' | |
return repr_str | |
class RandomFlip(MMCV_RandomFlip): | |
"""Flip the image & bbox & mask & segmentation map. Added or Updated keys: | |
flip, flip_direction, img, gt_bboxes, and gt_seg_map. There are 3 flip | |
modes: | |
- ``prob`` is float, ``direction`` is string: the image will be | |
``direction``ly flipped with probability of ``prob`` . | |
E.g., ``prob=0.5``, ``direction='horizontal'``, | |
then image will be horizontally flipped with probability of 0.5. | |
- ``prob`` is float, ``direction`` is list of string: the image will | |
be ``direction[i]``ly flipped with probability of | |
``prob/len(direction)``. | |
E.g., ``prob=0.5``, ``direction=['horizontal', 'vertical']``, | |
then image will be horizontally flipped with probability of 0.25, | |
vertically with probability of 0.25. | |
- ``prob`` is list of float, ``direction`` is list of string: | |
given ``len(prob) == len(direction)``, the image will | |
be ``direction[i]``ly flipped with probability of ``prob[i]``. | |
E.g., ``prob=[0.3, 0.5]``, ``direction=['horizontal', | |
'vertical']``, then image will be horizontally flipped with | |
probability of 0.3, vertically with probability of 0.5. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- gt_bboxes | |
- gt_masks | |
- gt_seg_map | |
Added Keys: | |
- flip | |
- flip_direction | |
- homography_matrix | |
Args: | |
prob (float | list[float], optional): The flipping probability. | |
Defaults to None. | |
direction(str | list[str]): The flipping direction. Options | |
If input is a list, the length must equal ``prob``. Each | |
element in ``prob`` indicates the flip probability of | |
corresponding direction. Defaults to 'horizontal'. | |
""" | |
def _record_homography_matrix(self, results: dict) -> None: | |
"""Record the homography matrix for the RandomFlip.""" | |
cur_dir = results['flip_direction'] | |
h, w = results['img'].shape[:2] | |
if cur_dir == 'horizontal': | |
homography_matrix = np.array([[-1, 0, w], [0, 1, 0], [0, 0, 1]], | |
dtype=np.float32) | |
elif cur_dir == 'vertical': | |
homography_matrix = np.array([[1, 0, 0], [0, -1, h], [0, 0, 1]], | |
dtype=np.float32) | |
elif cur_dir == 'diagonal': | |
homography_matrix = np.array([[-1, 0, w], [0, -1, h], [0, 0, 1]], | |
dtype=np.float32) | |
else: | |
homography_matrix = np.eye(3, dtype=np.float32) | |
if results.get('homography_matrix', None) is None: | |
results['homography_matrix'] = homography_matrix | |
else: | |
results['homography_matrix'] = homography_matrix @ results[ | |
'homography_matrix'] | |
def _flip(self, results: dict) -> None: | |
"""Flip images, bounding boxes, and semantic segmentation map.""" | |
# flip image | |
results['img'] = mmcv.imflip( | |
results['img'], direction=results['flip_direction']) | |
img_shape = results['img'].shape[:2] | |
# flip bboxes | |
if results.get('gt_bboxes', None) is not None: | |
results['gt_bboxes'].flip_(img_shape, results['flip_direction']) | |
# flip masks | |
if results.get('gt_masks', None) is not None: | |
results['gt_masks'] = results['gt_masks'].flip( | |
results['flip_direction']) | |
# flip segs | |
if results.get('gt_seg_map', None) is not None: | |
results['gt_seg_map'] = mmcv.imflip( | |
results['gt_seg_map'], direction=results['flip_direction']) | |
# record homography matrix for flip | |
self._record_homography_matrix(results) | |
class RandomShift(BaseTransform): | |
"""Shift the image and box given shift pixels and probability. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) | |
- gt_bboxes_labels (np.int64) | |
- gt_ignore_flags (bool) (optional) | |
Modified Keys: | |
- img | |
- gt_bboxes | |
- gt_bboxes_labels | |
- gt_ignore_flags (bool) (optional) | |
Args: | |
prob (float): Probability of shifts. Defaults to 0.5. | |
max_shift_px (int): The max pixels for shifting. Defaults to 32. | |
filter_thr_px (int): The width and height threshold for filtering. | |
The bbox and the rest of the targets below the width and | |
height threshold will be filtered. Defaults to 1. | |
""" | |
def __init__(self, | |
prob: float = 0.5, | |
max_shift_px: int = 32, | |
filter_thr_px: int = 1) -> None: | |
assert 0 <= prob <= 1 | |
assert max_shift_px >= 0 | |
self.prob = prob | |
self.max_shift_px = max_shift_px | |
self.filter_thr_px = int(filter_thr_px) | |
def _random_prob(self) -> float: | |
return random.uniform(0, 1) | |
def transform(self, results: dict) -> dict: | |
"""Transform function to random shift images, bounding boxes. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Shift results. | |
""" | |
if self._random_prob() < self.prob: | |
img_shape = results['img'].shape[:2] | |
random_shift_x = random.randint(-self.max_shift_px, | |
self.max_shift_px) | |
random_shift_y = random.randint(-self.max_shift_px, | |
self.max_shift_px) | |
new_x = max(0, random_shift_x) | |
ori_x = max(0, -random_shift_x) | |
new_y = max(0, random_shift_y) | |
ori_y = max(0, -random_shift_y) | |
# TODO: support mask and semantic segmentation maps. | |
bboxes = results['gt_bboxes'].clone() | |
bboxes.translate_([random_shift_x, random_shift_y]) | |
# clip border | |
bboxes.clip_(img_shape) | |
# remove invalid bboxes | |
valid_inds = (bboxes.widths > self.filter_thr_px).numpy() & ( | |
bboxes.heights > self.filter_thr_px).numpy() | |
# If the shift does not contain any gt-bbox area, skip this | |
# image. | |
if not valid_inds.any(): | |
return results | |
bboxes = bboxes[valid_inds] | |
results['gt_bboxes'] = bboxes | |
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][ | |
valid_inds] | |
if results.get('gt_ignore_flags', None) is not None: | |
results['gt_ignore_flags'] = \ | |
results['gt_ignore_flags'][valid_inds] | |
# shift img | |
img = results['img'] | |
new_img = np.zeros_like(img) | |
img_h, img_w = img.shape[:2] | |
new_h = img_h - np.abs(random_shift_y) | |
new_w = img_w - np.abs(random_shift_x) | |
new_img[new_y:new_y + new_h, new_x:new_x + new_w] \ | |
= img[ori_y:ori_y + new_h, ori_x:ori_x + new_w] | |
results['img'] = new_img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(prob={self.prob}, ' | |
repr_str += f'max_shift_px={self.max_shift_px}, ' | |
repr_str += f'filter_thr_px={self.filter_thr_px})' | |
return repr_str | |
class Pad(MMCV_Pad): | |
"""Pad the image & segmentation map. | |
There are three padding modes: (1) pad to a fixed size and (2) pad to the | |
minimum size that is divisible by some number. and (3)pad to square. Also, | |
pad to square and pad to the minimum size can be used as the same time. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_masks | |
- gt_seg_map | |
Added Keys: | |
- pad_shape | |
- pad_fixed_size | |
- pad_size_divisor | |
Args: | |
size (tuple, optional): Fixed padding size. | |
Expected padding shape (width, height). Defaults to None. | |
size_divisor (int, optional): The divisor of padded size. Defaults to | |
None. | |
pad_to_square (bool): Whether to pad the image into a square. | |
Currently only used for YOLOX. Defaults to False. | |
pad_val (Number | dict[str, Number], optional) - Padding value for if | |
the pad_mode is "constant". If it is a single number, the value | |
to pad the image is the number and to pad the semantic | |
segmentation map is 255. If it is a dict, it should have the | |
following keys: | |
- img: The value to pad the image. | |
- seg: The value to pad the semantic segmentation map. | |
Defaults to dict(img=0, seg=255). | |
padding_mode (str): Type of padding. Should be: constant, edge, | |
reflect or symmetric. Defaults to 'constant'. | |
- constant: pads with a constant value, this value is specified | |
with pad_val. | |
- edge: pads with the last value at the edge of the image. | |
- reflect: pads with reflection of image without repeating the last | |
value on the edge. For example, padding [1, 2, 3, 4] with 2 | |
elements on both sides in reflect mode will result in | |
[3, 2, 1, 2, 3, 4, 3, 2]. | |
- symmetric: pads with reflection of image repeating the last value | |
on the edge. For example, padding [1, 2, 3, 4] with 2 elements on | |
both sides in symmetric mode will result in | |
[2, 1, 1, 2, 3, 4, 4, 3] | |
""" | |
def _pad_masks(self, results: dict) -> None: | |
"""Pad masks according to ``results['pad_shape']``.""" | |
if results.get('gt_masks', None) is not None: | |
pad_val = self.pad_val.get('masks', 0) | |
pad_shape = results['pad_shape'][:2] | |
results['gt_masks'] = results['gt_masks'].pad( | |
pad_shape, pad_val=pad_val) | |
def transform(self, results: dict) -> dict: | |
"""Call function to pad images, masks, semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Updated result dict. | |
""" | |
self._pad_img(results) | |
self._pad_seg(results) | |
self._pad_masks(results) | |
return results | |
class RandomCrop(BaseTransform): | |
"""Random crop the image & bboxes & masks. | |
The absolute ``crop_size`` is sampled based on ``crop_type`` and | |
``image_size``, then the cropped results are generated. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_masks (optional) | |
- gt_ignore_flags (optional) | |
- gt_seg_map (optional) | |
Added Keys: | |
- homography_matrix | |
Args: | |
crop_size (tuple): The relative ratio or absolute pixels of | |
(width, height). | |
crop_type (str, optional): One of "relative_range", "relative", | |
"absolute", "absolute_range". "relative" randomly crops | |
(h * crop_size[0], w * crop_size[1]) part from an input of size | |
(h, w). "relative_range" uniformly samples relative crop size from | |
range [crop_size[0], 1] and [crop_size[1], 1] for height and width | |
respectively. "absolute" crops from an input with absolute size | |
(crop_size[0], crop_size[1]). "absolute_range" uniformly samples | |
crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w | |
in range [crop_size[0], min(w, crop_size[1])]. | |
Defaults to "absolute". | |
allow_negative_crop (bool, optional): Whether to allow a crop that does | |
not contain any bbox area. Defaults to False. | |
recompute_bbox (bool, optional): Whether to re-compute the boxes based | |
on cropped instance masks. Defaults to False. | |
bbox_clip_border (bool, optional): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
Note: | |
- If the image is smaller than the absolute crop size, return the | |
original image. | |
- The keys for bboxes, labels and masks must be aligned. That is, | |
``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and | |
``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and | |
``gt_masks_ignore``. | |
- If the crop does not contain any gt-bbox region and | |
``allow_negative_crop`` is set to False, skip this image. | |
""" | |
def __init__(self, | |
crop_size: tuple, | |
crop_type: str = 'absolute', | |
allow_negative_crop: bool = False, | |
recompute_bbox: bool = False, | |
bbox_clip_border: bool = True) -> None: | |
if crop_type not in [ | |
'relative_range', 'relative', 'absolute', 'absolute_range' | |
]: | |
raise ValueError(f'Invalid crop_type {crop_type}.') | |
if crop_type in ['absolute', 'absolute_range']: | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
assert isinstance(crop_size[0], int) and isinstance( | |
crop_size[1], int) | |
if crop_type == 'absolute_range': | |
assert crop_size[0] <= crop_size[1] | |
else: | |
assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1 | |
self.crop_size = crop_size | |
self.crop_type = crop_type | |
self.allow_negative_crop = allow_negative_crop | |
self.bbox_clip_border = bbox_clip_border | |
self.recompute_bbox = recompute_bbox | |
def _crop_data(self, results: dict, crop_size: Tuple[int, int], | |
allow_negative_crop: bool) -> Union[dict, None]: | |
"""Function to randomly crop images, bounding boxes, masks, semantic | |
segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
crop_size (Tuple[int, int]): Expected absolute size after | |
cropping, (h, w). | |
allow_negative_crop (bool): Whether to allow a crop that does not | |
contain any bbox area. | |
Returns: | |
results (Union[dict, None]): Randomly cropped results, 'img_shape' | |
key in result dict is updated according to crop size. None will | |
be returned when there is no valid bbox after cropping. | |
""" | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
img = results['img'] | |
margin_h = max(img.shape[0] - crop_size[0], 0) | |
margin_w = max(img.shape[1] - crop_size[1], 0) | |
offset_h, offset_w = self._rand_offset((margin_h, margin_w)) | |
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] | |
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] | |
# Record the homography matrix for the RandomCrop | |
homography_matrix = np.array( | |
[[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]], | |
dtype=np.float32) | |
if results.get('homography_matrix', None) is None: | |
results['homography_matrix'] = homography_matrix | |
else: | |
results['homography_matrix'] = homography_matrix @ results[ | |
'homography_matrix'] | |
# crop the image | |
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] | |
img_shape = img.shape | |
results['img'] = img | |
results['img_shape'] = img_shape | |
# crop bboxes accordingly and clip to the image boundary | |
if results.get('gt_bboxes', None) is not None: | |
bboxes = results['gt_bboxes'] | |
bboxes.translate_([-offset_w, -offset_h]) | |
if self.bbox_clip_border: | |
bboxes.clip_(img_shape[:2]) | |
valid_inds = bboxes.is_inside(img_shape[:2]).numpy() | |
# If the crop does not contain any gt-bbox area and | |
# allow_negative_crop is False, skip this image. | |
if (not valid_inds.any() and not allow_negative_crop): | |
return None | |
results['gt_bboxes'] = bboxes[valid_inds] | |
if results.get('gt_ignore_flags', None) is not None: | |
results['gt_ignore_flags'] = \ | |
results['gt_ignore_flags'][valid_inds] | |
if results.get('gt_bboxes_labels', None) is not None: | |
results['gt_bboxes_labels'] = \ | |
results['gt_bboxes_labels'][valid_inds] | |
if results.get('gt_masks', None) is not None: | |
results['gt_masks'] = results['gt_masks'][ | |
valid_inds.nonzero()[0]].crop( | |
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) | |
if self.recompute_bbox: | |
results['gt_bboxes'] = results['gt_masks'].get_bboxes( | |
type(results['gt_bboxes'])) | |
# crop semantic seg | |
if results.get('gt_seg_map', None) is not None: | |
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2, | |
crop_x1:crop_x2] | |
return results | |
def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]: | |
"""Randomly generate crop offset. | |
Args: | |
margin (Tuple[int, int]): The upper bound for the offset generated | |
randomly. | |
Returns: | |
Tuple[int, int]: The random offset for the crop. | |
""" | |
margin_h, margin_w = margin | |
offset_h = np.random.randint(0, margin_h + 1) | |
offset_w = np.random.randint(0, margin_w + 1) | |
return offset_h, offset_w | |
def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]: | |
"""Randomly generates the absolute crop size based on `crop_type` and | |
`image_size`. | |
Args: | |
image_size (Tuple[int, int]): (h, w). | |
Returns: | |
crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels. | |
""" | |
h, w = image_size | |
if self.crop_type == 'absolute': | |
return min(self.crop_size[1], h), min(self.crop_size[0], w) | |
elif self.crop_type == 'absolute_range': | |
crop_h = np.random.randint( | |
min(h, self.crop_size[0]), | |
min(h, self.crop_size[1]) + 1) | |
crop_w = np.random.randint( | |
min(w, self.crop_size[0]), | |
min(w, self.crop_size[1]) + 1) | |
return crop_h, crop_w | |
elif self.crop_type == 'relative': | |
crop_w, crop_h = self.crop_size | |
return int(h * crop_h + 0.5), int(w * crop_w + 0.5) | |
else: | |
# 'relative_range' | |
crop_size = np.asarray(self.crop_size, dtype=np.float32) | |
crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size) | |
return int(h * crop_h + 0.5), int(w * crop_w + 0.5) | |
def transform(self, results: dict) -> Union[dict, None]: | |
"""Transform function to randomly crop images, bounding boxes, masks, | |
semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
results (Union[dict, None]): Randomly cropped results, 'img_shape' | |
key in result dict is updated according to crop size. None will | |
be returned when there is no valid bbox after cropping. | |
""" | |
image_size = results['img'].shape[:2] | |
crop_size = self._get_crop_size(image_size) | |
results = self._crop_data(results, crop_size, self.allow_negative_crop) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(crop_size={self.crop_size}, ' | |
repr_str += f'crop_type={self.crop_type}, ' | |
repr_str += f'allow_negative_crop={self.allow_negative_crop}, ' | |
repr_str += f'recompute_bbox={self.recompute_bbox}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class SegRescale(BaseTransform): | |
"""Rescale semantic segmentation maps. | |
This transform rescale the ``gt_seg_map`` according to ``scale_factor``. | |
Required Keys: | |
- gt_seg_map | |
Modified Keys: | |
- gt_seg_map | |
Args: | |
scale_factor (float): The scale factor of the final output. Defaults | |
to 1. | |
backend (str): Image rescale backend, choices are 'cv2' and 'pillow'. | |
These two backends generates slightly different results. Defaults | |
to 'cv2'. | |
""" | |
def __init__(self, scale_factor: float = 1, backend: str = 'cv2') -> None: | |
self.scale_factor = scale_factor | |
self.backend = backend | |
def transform(self, results: dict) -> dict: | |
"""Transform function to scale the semantic segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with semantic segmentation map scaled. | |
""" | |
if self.scale_factor != 1: | |
results['gt_seg_map'] = mmcv.imrescale( | |
results['gt_seg_map'], | |
self.scale_factor, | |
interpolation='nearest', | |
backend=self.backend) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(scale_factor={self.scale_factor}, ' | |
repr_str += f'backend={self.backend})' | |
return repr_str | |
class PhotoMetricDistortion(BaseTransform): | |
"""Apply photometric distortion to image sequentially, every transformation | |
is applied with a probability of 0.5. The position of random contrast is in | |
second or second to last. | |
1. random brightness | |
2. random contrast (mode 0) | |
3. convert color from BGR to HSV | |
4. random saturation | |
5. random hue | |
6. convert color from HSV to BGR | |
7. random contrast (mode 1) | |
8. randomly swap channels | |
Required Keys: | |
- img (np.uint8) | |
Modified Keys: | |
- img (np.float32) | |
Args: | |
brightness_delta (int): delta of brightness. | |
contrast_range (sequence): range of contrast. | |
saturation_range (sequence): range of saturation. | |
hue_delta (int): delta of hue. | |
""" | |
def __init__(self, | |
brightness_delta: int = 32, | |
contrast_range: Sequence[Number] = (0.5, 1.5), | |
saturation_range: Sequence[Number] = (0.5, 1.5), | |
hue_delta: int = 18) -> None: | |
self.brightness_delta = brightness_delta | |
self.contrast_lower, self.contrast_upper = contrast_range | |
self.saturation_lower, self.saturation_upper = saturation_range | |
self.hue_delta = hue_delta | |
def _random_flags(self) -> Sequence[Number]: | |
mode = random.randint(2) | |
brightness_flag = random.randint(2) | |
contrast_flag = random.randint(2) | |
saturation_flag = random.randint(2) | |
hue_flag = random.randint(2) | |
swap_flag = random.randint(2) | |
delta_value = random.uniform(-self.brightness_delta, | |
self.brightness_delta) | |
alpha_value = random.uniform(self.contrast_lower, self.contrast_upper) | |
saturation_value = random.uniform(self.saturation_lower, | |
self.saturation_upper) | |
hue_value = random.uniform(-self.hue_delta, self.hue_delta) | |
swap_value = random.permutation(3) | |
return (mode, brightness_flag, contrast_flag, saturation_flag, | |
hue_flag, swap_flag, delta_value, alpha_value, | |
saturation_value, hue_value, swap_value) | |
def transform(self, results: dict) -> dict: | |
"""Transform function to perform photometric distortion on images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images distorted. | |
""" | |
assert 'img' in results, '`img` is not found in results' | |
img = results['img'] | |
img = img.astype(np.float32) | |
(mode, brightness_flag, contrast_flag, saturation_flag, hue_flag, | |
swap_flag, delta_value, alpha_value, saturation_value, hue_value, | |
swap_value) = self._random_flags() | |
# random brightness | |
if brightness_flag: | |
img += delta_value | |
# mode == 0 --> do random contrast first | |
# mode == 1 --> do random contrast last | |
if mode == 1: | |
if contrast_flag: | |
img *= alpha_value | |
# convert color from BGR to HSV | |
img = mmcv.bgr2hsv(img) | |
# random saturation | |
if saturation_flag: | |
img[..., 1] *= saturation_value | |
# For image(type=float32), after convert bgr to hsv by opencv, | |
# valid saturation value range is [0, 1] | |
if saturation_value > 1: | |
img[..., 1] = img[..., 1].clip(0, 1) | |
# random hue | |
if hue_flag: | |
img[..., 0] += hue_value | |
img[..., 0][img[..., 0] > 360] -= 360 | |
img[..., 0][img[..., 0] < 0] += 360 | |
# convert color from HSV to BGR | |
img = mmcv.hsv2bgr(img) | |
# random contrast | |
if mode == 0: | |
if contrast_flag: | |
img *= alpha_value | |
# randomly swap channels | |
if swap_flag: | |
img = img[..., swap_value] | |
results['img'] = img | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(brightness_delta={self.brightness_delta}, ' | |
repr_str += 'contrast_range=' | |
repr_str += f'{(self.contrast_lower, self.contrast_upper)}, ' | |
repr_str += 'saturation_range=' | |
repr_str += f'{(self.saturation_lower, self.saturation_upper)}, ' | |
repr_str += f'hue_delta={self.hue_delta})' | |
return repr_str | |
class Expand(BaseTransform): | |
"""Random expand the image & bboxes & masks & segmentation map. | |
Randomly place the original image on a canvas of ``ratio`` x original image | |
size filled with mean values. The ratio is in the range of ratio_range. | |
Required Keys: | |
- img | |
- img_shape | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes | |
- gt_masks | |
- gt_seg_map | |
Args: | |
mean (sequence): mean value of dataset. | |
to_rgb (bool): if need to convert the order of mean to align with RGB. | |
ratio_range (sequence)): range of expand ratio. | |
seg_ignore_label (int): label of ignore segmentation map. | |
prob (float): probability of applying this transformation | |
""" | |
def __init__(self, | |
mean: Sequence[Number] = (0, 0, 0), | |
to_rgb: bool = True, | |
ratio_range: Sequence[Number] = (1, 4), | |
seg_ignore_label: int = None, | |
prob: float = 0.5) -> None: | |
self.to_rgb = to_rgb | |
self.ratio_range = ratio_range | |
if to_rgb: | |
self.mean = mean[::-1] | |
else: | |
self.mean = mean | |
self.min_ratio, self.max_ratio = ratio_range | |
self.seg_ignore_label = seg_ignore_label | |
self.prob = prob | |
def _random_prob(self) -> float: | |
return random.uniform(0, 1) | |
def _random_ratio(self) -> float: | |
return random.uniform(self.min_ratio, self.max_ratio) | |
def _random_left_top(self, ratio: float, h: int, | |
w: int) -> Tuple[int, int]: | |
left = int(random.uniform(0, w * ratio - w)) | |
top = int(random.uniform(0, h * ratio - h)) | |
return left, top | |
def transform(self, results: dict) -> dict: | |
"""Transform function to expand images, bounding boxes, masks, | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images, bounding boxes, masks, segmentation | |
map expanded. | |
""" | |
if self._random_prob() > self.prob: | |
return results | |
assert 'img' in results, '`img` is not found in results' | |
img = results['img'] | |
h, w, c = img.shape | |
ratio = self._random_ratio() | |
# speedup expand when meets large image | |
if np.all(self.mean == self.mean[0]): | |
expand_img = np.empty((int(h * ratio), int(w * ratio), c), | |
img.dtype) | |
expand_img.fill(self.mean[0]) | |
else: | |
expand_img = np.full((int(h * ratio), int(w * ratio), c), | |
self.mean, | |
dtype=img.dtype) | |
left, top = self._random_left_top(ratio, h, w) | |
expand_img[top:top + h, left:left + w] = img | |
results['img'] = expand_img | |
results['img_shape'] = expand_img.shape[:2] | |
# expand bboxes | |
if results.get('gt_bboxes', None) is not None: | |
results['gt_bboxes'].translate_([left, top]) | |
# expand masks | |
if results.get('gt_masks', None) is not None: | |
results['gt_masks'] = results['gt_masks'].expand( | |
int(h * ratio), int(w * ratio), top, left) | |
# expand segmentation map | |
if results.get('gt_seg_map', None) is not None: | |
gt_seg = results['gt_seg_map'] | |
expand_gt_seg = np.full((int(h * ratio), int(w * ratio)), | |
self.seg_ignore_label, | |
dtype=gt_seg.dtype) | |
expand_gt_seg[top:top + h, left:left + w] = gt_seg | |
results['gt_seg_map'] = expand_gt_seg | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' | |
repr_str += f'prob={self.prob})' | |
return repr_str | |
class MinIoURandomCrop(BaseTransform): | |
"""Random crop the image & bboxes & masks & segmentation map, the cropped | |
patches have minimum IoU requirement with original image & bboxes & masks. | |
& segmentation map, the IoU threshold is randomly selected from min_ious. | |
Required Keys: | |
- img | |
- img_shape | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- gt_seg_map (np.uint8) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes | |
- gt_bboxes_labels | |
- gt_masks | |
- gt_ignore_flags | |
- gt_seg_map | |
Args: | |
min_ious (Sequence[float]): minimum IoU threshold for all intersections | |
with bounding boxes. | |
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, | |
where a >= min_crop_size). | |
bbox_clip_border (bool, optional): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
""" | |
def __init__(self, | |
min_ious: Sequence[float] = (0.1, 0.3, 0.5, 0.7, 0.9), | |
min_crop_size: float = 0.3, | |
bbox_clip_border: bool = True) -> None: | |
self.min_ious = min_ious | |
self.sample_mode = (1, *min_ious, 0) | |
self.min_crop_size = min_crop_size | |
self.bbox_clip_border = bbox_clip_border | |
def _random_mode(self) -> Number: | |
return random.choice(self.sample_mode) | |
def transform(self, results: dict) -> dict: | |
"""Transform function to crop images and bounding boxes with minimum | |
IoU constraint. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images and bounding boxes cropped, \ | |
'img_shape' key is updated. | |
""" | |
assert 'img' in results, '`img` is not found in results' | |
assert 'gt_bboxes' in results, '`gt_bboxes` is not found in results' | |
img = results['img'] | |
boxes = results['gt_bboxes'] | |
h, w, c = img.shape | |
while True: | |
mode = self._random_mode() | |
self.mode = mode | |
if mode == 1: | |
return results | |
min_iou = self.mode | |
for i in range(50): | |
new_w = random.uniform(self.min_crop_size * w, w) | |
new_h = random.uniform(self.min_crop_size * h, h) | |
# h / w in [0.5, 2] | |
if new_h / new_w < 0.5 or new_h / new_w > 2: | |
continue | |
left = random.uniform(w - new_w) | |
top = random.uniform(h - new_h) | |
patch = np.array( | |
(int(left), int(top), int(left + new_w), int(top + new_h))) | |
# Line or point crop is not allowed | |
if patch[2] == patch[0] or patch[3] == patch[1]: | |
continue | |
overlaps = boxes.overlaps( | |
HorizontalBoxes(patch.reshape(-1, 4).astype(np.float32)), | |
boxes).numpy().reshape(-1) | |
if len(overlaps) > 0 and overlaps.min() < min_iou: | |
continue | |
# center of boxes should inside the crop img | |
# only adjust boxes and instance masks when the gt is not empty | |
if len(overlaps) > 0: | |
# adjust boxes | |
def is_center_of_bboxes_in_patch(boxes, patch): | |
centers = boxes.centers.numpy() | |
mask = ((centers[:, 0] > patch[0]) * | |
(centers[:, 1] > patch[1]) * | |
(centers[:, 0] < patch[2]) * | |
(centers[:, 1] < patch[3])) | |
return mask | |
mask = is_center_of_bboxes_in_patch(boxes, patch) | |
if not mask.any(): | |
continue | |
if results.get('gt_bboxes', None) is not None: | |
boxes = results['gt_bboxes'] | |
mask = is_center_of_bboxes_in_patch(boxes, patch) | |
boxes = boxes[mask] | |
boxes.translate_([-patch[0], -patch[1]]) | |
if self.bbox_clip_border: | |
boxes.clip_( | |
[patch[3] - patch[1], patch[2] - patch[0]]) | |
results['gt_bboxes'] = boxes | |
# ignore_flags | |
if results.get('gt_ignore_flags', None) is not None: | |
results['gt_ignore_flags'] = \ | |
results['gt_ignore_flags'][mask] | |
# labels | |
if results.get('gt_bboxes_labels', None) is not None: | |
results['gt_bboxes_labels'] = results[ | |
'gt_bboxes_labels'][mask] | |
# mask fields | |
if results.get('gt_masks', None) is not None: | |
results['gt_masks'] = results['gt_masks'][ | |
mask.nonzero()[0]].crop(patch) | |
# adjust the img no matter whether the gt is empty before crop | |
img = img[patch[1]:patch[3], patch[0]:patch[2]] | |
results['img'] = img | |
results['img_shape'] = img.shape[:2] | |
# seg fields | |
if results.get('gt_seg_map', None) is not None: | |
results['gt_seg_map'] = results['gt_seg_map'][ | |
patch[1]:patch[3], patch[0]:patch[2]] | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(min_ious={self.min_ious}, ' | |
repr_str += f'min_crop_size={self.min_crop_size}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class Corrupt(BaseTransform): | |
"""Corruption augmentation. | |
Corruption transforms implemented based on | |
`imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_. | |
Required Keys: | |
- img (np.uint8) | |
Modified Keys: | |
- img (np.uint8) | |
Args: | |
corruption (str): Corruption name. | |
severity (int): The severity of corruption. Defaults to 1. | |
""" | |
def __init__(self, corruption: str, severity: int = 1) -> None: | |
self.corruption = corruption | |
self.severity = severity | |
def transform(self, results: dict) -> dict: | |
"""Call function to corrupt image. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images corrupted. | |
""" | |
if corrupt is None: | |
raise RuntimeError('imagecorruptions is not installed') | |
results['img'] = corrupt( | |
results['img'].astype(np.uint8), | |
corruption_name=self.corruption, | |
severity=self.severity) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(corruption={self.corruption}, ' | |
repr_str += f'severity={self.severity})' | |
return repr_str | |
class Albu(BaseTransform): | |
"""Albumentation augmentation. | |
Adds custom transformations from Albumentations library. | |
Please, visit `https://albumentations.readthedocs.io` | |
to get more information. | |
Required Keys: | |
- img (np.uint8) | |
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
Modified Keys: | |
- img (np.uint8) | |
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional) | |
- gt_masks (BitmapMasks | PolygonMasks) (optional) | |
- img_shape (tuple) | |
An example of ``transforms`` is as followed: | |
.. code-block:: | |
[ | |
dict( | |
type='ShiftScaleRotate', | |
shift_limit=0.0625, | |
scale_limit=0.0, | |
rotate_limit=0, | |
interpolation=1, | |
p=0.5), | |
dict( | |
type='RandomBrightnessContrast', | |
brightness_limit=[0.1, 0.3], | |
contrast_limit=[0.1, 0.3], | |
p=0.2), | |
dict(type='ChannelShuffle', p=0.1), | |
dict( | |
type='OneOf', | |
transforms=[ | |
dict(type='Blur', blur_limit=3, p=1.0), | |
dict(type='MedianBlur', blur_limit=3, p=1.0) | |
], | |
p=0.1), | |
] | |
Args: | |
transforms (list[dict]): A list of albu transformations | |
bbox_params (dict, optional): Bbox_params for albumentation `Compose` | |
keymap (dict, optional): Contains | |
{'input key':'albumentation-style key'} | |
skip_img_without_anno (bool): Whether to skip the image if no ann left | |
after aug. Defaults to False. | |
""" | |
def __init__(self, | |
transforms: List[dict], | |
bbox_params: Optional[dict] = None, | |
keymap: Optional[dict] = None, | |
skip_img_without_anno: bool = False) -> None: | |
if Compose is None: | |
raise RuntimeError('albumentations is not installed') | |
# Args will be modified later, copying it will be safer | |
transforms = copy.deepcopy(transforms) | |
if bbox_params is not None: | |
bbox_params = copy.deepcopy(bbox_params) | |
if keymap is not None: | |
keymap = copy.deepcopy(keymap) | |
self.transforms = transforms | |
self.filter_lost_elements = False | |
self.skip_img_without_anno = skip_img_without_anno | |
# A simple workaround to remove masks without boxes | |
if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params | |
and 'filter_lost_elements' in bbox_params): | |
self.filter_lost_elements = True | |
self.origin_label_fields = bbox_params['label_fields'] | |
bbox_params['label_fields'] = ['idx_mapper'] | |
del bbox_params['filter_lost_elements'] | |
self.bbox_params = ( | |
self.albu_builder(bbox_params) if bbox_params else None) | |
self.aug = Compose([self.albu_builder(t) for t in self.transforms], | |
bbox_params=self.bbox_params) | |
if not keymap: | |
self.keymap_to_albu = { | |
'img': 'image', | |
'gt_masks': 'masks', | |
'gt_bboxes': 'bboxes' | |
} | |
else: | |
self.keymap_to_albu = keymap | |
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} | |
def albu_builder(self, cfg: dict) -> albumentations: | |
"""Import a module from albumentations. | |
It inherits some of :func:`build_from_cfg` logic. | |
Args: | |
cfg (dict): Config dict. It should at least contain the key "type". | |
Returns: | |
obj: The constructed object. | |
""" | |
assert isinstance(cfg, dict) and 'type' in cfg | |
args = cfg.copy() | |
obj_type = args.pop('type') | |
if is_str(obj_type): | |
if albumentations is None: | |
raise RuntimeError('albumentations is not installed') | |
obj_cls = getattr(albumentations, obj_type) | |
elif inspect.isclass(obj_type): | |
obj_cls = obj_type | |
else: | |
raise TypeError( | |
f'type must be a str or valid type, but got {type(obj_type)}') | |
if 'transforms' in args: | |
args['transforms'] = [ | |
self.albu_builder(transform) | |
for transform in args['transforms'] | |
] | |
return obj_cls(**args) | |
def mapper(d: dict, keymap: dict) -> dict: | |
"""Dictionary mapper. Renames keys according to keymap provided. | |
Args: | |
d (dict): old dict | |
keymap (dict): {'old_key':'new_key'} | |
Returns: | |
dict: new dict. | |
""" | |
updated_dict = {} | |
for k, v in zip(d.keys(), d.values()): | |
new_k = keymap.get(k, k) | |
updated_dict[new_k] = d[k] | |
return updated_dict | |
def transform(self, results: dict) -> Union[dict, None]: | |
"""Transform function of Albu.""" | |
# TODO: gt_seg_map is not currently supported | |
# dict to albumentations format | |
results = self.mapper(results, self.keymap_to_albu) | |
results, ori_masks = self._preprocess_results(results) | |
results = self.aug(**results) | |
results = self._postprocess_results(results, ori_masks) | |
if results is None: | |
return None | |
# back to the original format | |
results = self.mapper(results, self.keymap_back) | |
results['img_shape'] = results['img'].shape | |
return results | |
def _preprocess_results(self, results: dict) -> tuple: | |
"""Pre-processing results to facilitate the use of Albu.""" | |
if 'bboxes' in results: | |
# to list of boxes | |
if not isinstance(results['bboxes'], HorizontalBoxes): | |
raise NotImplementedError( | |
'Albu only supports horizontal boxes now') | |
bboxes = results['bboxes'].numpy() | |
results['bboxes'] = [x for x in bboxes] | |
# add pseudo-field for filtration | |
if self.filter_lost_elements: | |
results['idx_mapper'] = np.arange(len(results['bboxes'])) | |
# TODO: Support mask structure in albu | |
ori_masks = None | |
if 'masks' in results: | |
if isinstance(results['masks'], PolygonMasks): | |
raise NotImplementedError( | |
'Albu only supports BitMap masks now') | |
ori_masks = results['masks'] | |
if albumentations.__version__ < '0.5': | |
results['masks'] = results['masks'].masks | |
else: | |
results['masks'] = [mask for mask in results['masks'].masks] | |
return results, ori_masks | |
def _postprocess_results( | |
self, | |
results: dict, | |
ori_masks: Optional[Union[BitmapMasks, | |
PolygonMasks]] = None) -> dict: | |
"""Post-processing Albu output.""" | |
# albumentations may return np.array or list on different versions | |
if 'gt_bboxes_labels' in results and isinstance( | |
results['gt_bboxes_labels'], list): | |
results['gt_bboxes_labels'] = np.array( | |
results['gt_bboxes_labels'], dtype=np.int64) | |
if 'gt_ignore_flags' in results and isinstance( | |
results['gt_ignore_flags'], list): | |
results['gt_ignore_flags'] = np.array( | |
results['gt_ignore_flags'], dtype=bool) | |
if 'bboxes' in results: | |
if isinstance(results['bboxes'], list): | |
results['bboxes'] = np.array( | |
results['bboxes'], dtype=np.float32) | |
results['bboxes'] = results['bboxes'].reshape(-1, 4) | |
results['bboxes'] = HorizontalBoxes(results['bboxes']) | |
# filter label_fields | |
if self.filter_lost_elements: | |
for label in self.origin_label_fields: | |
results[label] = np.array( | |
[results[label][i] for i in results['idx_mapper']]) | |
if 'masks' in results: | |
assert ori_masks is not None | |
results['masks'] = np.array( | |
[results['masks'][i] for i in results['idx_mapper']]) | |
results['masks'] = ori_masks.__class__( | |
results['masks'], results['image'].shape[0], | |
results['image'].shape[1]) | |
if (not len(results['idx_mapper']) | |
and self.skip_img_without_anno): | |
return None | |
elif 'masks' in results: | |
results['masks'] = ori_masks.__class__( | |
results['masks'], results['image'].shape[0], | |
results['image'].shape[1]) | |
return results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' | |
return repr_str | |
class RandomCenterCropPad(BaseTransform): | |
"""Random center crop and random around padding for CornerNet. | |
This operation generates randomly cropped image from the original image and | |
pads it simultaneously. Different from :class:`RandomCrop`, the output | |
shape may not equal to ``crop_size`` strictly. We choose a random value | |
from ``ratios`` and the output shape could be larger or smaller than | |
``crop_size``. The padding operation is also different from :class:`Pad`, | |
here we use around padding instead of right-bottom padding. | |
The relation between output image (padding image) and original image: | |
.. code:: text | |
output image | |
+----------------------------+ | |
| padded area | | |
+------|----------------------------|----------+ | |
| | cropped area | | | |
| | +---------------+ | | | |
| | | . center | | | original image | |
| | | range | | | | |
| | +---------------+ | | | |
+------|----------------------------|----------+ | |
| padded area | | |
+----------------------------+ | |
There are 5 main areas in the figure: | |
- output image: output image of this operation, also called padding | |
image in following instruction. | |
- original image: input image of this operation. | |
- padded area: non-intersect area of output image and original image. | |
- cropped area: the overlap of output image and original image. | |
- center range: a smaller area where random center chosen from. | |
center range is computed by ``border`` and original image's shape | |
to avoid our random center is too close to original image's border. | |
Also this operation act differently in train and test mode, the summary | |
pipeline is listed below. | |
Train pipeline: | |
1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image | |
will be ``random_ratio * crop_size``. | |
2. Choose a ``random_center`` in center range. | |
3. Generate padding image with center matches the ``random_center``. | |
4. Initialize the padding image with pixel value equals to ``mean``. | |
5. Copy the cropped area to padding image. | |
6. Refine annotations. | |
Test pipeline: | |
1. Compute output shape according to ``test_pad_mode``. | |
2. Generate padding image with center matches the original image | |
center. | |
3. Initialize the padding image with pixel value equals to ``mean``. | |
4. Copy the ``cropped area`` to padding image. | |
Required Keys: | |
- img (np.float32) | |
- img_shape (tuple) | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
Modified Keys: | |
- img (np.float32) | |
- img_shape (tuple) | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
Args: | |
crop_size (tuple, optional): expected size after crop, final size will | |
computed according to ratio. Requires (width, height) | |
in train mode, and None in test mode. | |
ratios (tuple, optional): random select a ratio from tuple and crop | |
image to (crop_size[0] * ratio) * (crop_size[1] * ratio). | |
Only available in train mode. Defaults to (0.9, 1.0, 1.1). | |
border (int, optional): max distance from center select area to image | |
border. Only available in train mode. Defaults to 128. | |
mean (sequence, optional): Mean values of 3 channels. | |
std (sequence, optional): Std values of 3 channels. | |
to_rgb (bool, optional): Whether to convert the image from BGR to RGB. | |
test_mode (bool): whether involve random variables in transform. | |
In train mode, crop_size is fixed, center coords and ratio is | |
random selected from predefined lists. In test mode, crop_size | |
is image's original shape, center coords and ratio is fixed. | |
Defaults to False. | |
test_pad_mode (tuple, optional): padding method and padding shape | |
value, only available in test mode. Default is using | |
'logical_or' with 127 as padding shape value. | |
- 'logical_or': final_shape = input_shape | padding_shape_value | |
- 'size_divisor': final_shape = int( | |
ceil(input_shape / padding_shape_value) * padding_shape_value) | |
Defaults to ('logical_or', 127). | |
test_pad_add_pix (int): Extra padding pixel in test mode. | |
Defaults to 0. | |
bbox_clip_border (bool): Whether clip the objects outside | |
the border of the image. Defaults to True. | |
""" | |
def __init__(self, | |
crop_size: Optional[tuple] = None, | |
ratios: Optional[tuple] = (0.9, 1.0, 1.1), | |
border: Optional[int] = 128, | |
mean: Optional[Sequence] = None, | |
std: Optional[Sequence] = None, | |
to_rgb: Optional[bool] = None, | |
test_mode: bool = False, | |
test_pad_mode: Optional[tuple] = ('logical_or', 127), | |
test_pad_add_pix: int = 0, | |
bbox_clip_border: bool = True) -> None: | |
if test_mode: | |
assert crop_size is None, 'crop_size must be None in test mode' | |
assert ratios is None, 'ratios must be None in test mode' | |
assert border is None, 'border must be None in test mode' | |
assert isinstance(test_pad_mode, (list, tuple)) | |
assert test_pad_mode[0] in ['logical_or', 'size_divisor'] | |
else: | |
assert isinstance(crop_size, (list, tuple)) | |
assert crop_size[0] > 0 and crop_size[1] > 0, ( | |
'crop_size must > 0 in train mode') | |
assert isinstance(ratios, (list, tuple)) | |
assert test_pad_mode is None, ( | |
'test_pad_mode must be None in train mode') | |
self.crop_size = crop_size | |
self.ratios = ratios | |
self.border = border | |
# We do not set default value to mean, std and to_rgb because these | |
# hyper-parameters are easy to forget but could affect the performance. | |
# Please use the same setting as Normalize for performance assurance. | |
assert mean is not None and std is not None and to_rgb is not None | |
self.to_rgb = to_rgb | |
self.input_mean = mean | |
self.input_std = std | |
if to_rgb: | |
self.mean = mean[::-1] | |
self.std = std[::-1] | |
else: | |
self.mean = mean | |
self.std = std | |
self.test_mode = test_mode | |
self.test_pad_mode = test_pad_mode | |
self.test_pad_add_pix = test_pad_add_pix | |
self.bbox_clip_border = bbox_clip_border | |
def _get_border(self, border, size): | |
"""Get final border for the target size. | |
This function generates a ``final_border`` according to image's shape. | |
The area between ``final_border`` and ``size - final_border`` is the | |
``center range``. We randomly choose center from the ``center range`` | |
to avoid our random center is too close to original image's border. | |
Also ``center range`` should be larger than 0. | |
Args: | |
border (int): The initial border, default is 128. | |
size (int): The width or height of original image. | |
Returns: | |
int: The final border. | |
""" | |
k = 2 * border / size | |
i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k))) | |
return border // i | |
def _filter_boxes(self, patch, boxes): | |
"""Check whether the center of each box is in the patch. | |
Args: | |
patch (list[int]): The cropped area, [left, top, right, bottom]. | |
boxes (numpy array, (N x 4)): Ground truth boxes. | |
Returns: | |
mask (numpy array, (N,)): Each box is inside or outside the patch. | |
""" | |
center = boxes.centers.numpy() | |
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * ( | |
center[:, 0] < patch[2]) * ( | |
center[:, 1] < patch[3]) | |
return mask | |
def _crop_image_and_paste(self, image, center, size): | |
"""Crop image with a given center and size, then paste the cropped | |
image to a blank image with two centers align. | |
This function is equivalent to generating a blank image with ``size`` | |
as its shape. Then cover it on the original image with two centers ( | |
the center of blank image and the random center of original image) | |
aligned. The overlap area is paste from the original image and the | |
outside area is filled with ``mean pixel``. | |
Args: | |
image (np array, H x W x C): Original image. | |
center (list[int]): Target crop center coord. | |
size (list[int]): Target crop size. [target_h, target_w] | |
Returns: | |
cropped_img (np array, target_h x target_w x C): Cropped image. | |
border (np array, 4): The distance of four border of | |
``cropped_img`` to the original image area, [top, bottom, | |
left, right] | |
patch (list[int]): The cropped area, [left, top, right, bottom]. | |
""" | |
center_y, center_x = center | |
target_h, target_w = size | |
img_h, img_w, img_c = image.shape | |
x0 = max(0, center_x - target_w // 2) | |
x1 = min(center_x + target_w // 2, img_w) | |
y0 = max(0, center_y - target_h // 2) | |
y1 = min(center_y + target_h // 2, img_h) | |
patch = np.array((int(x0), int(y0), int(x1), int(y1))) | |
left, right = center_x - x0, x1 - center_x | |
top, bottom = center_y - y0, y1 - center_y | |
cropped_center_y, cropped_center_x = target_h // 2, target_w // 2 | |
cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype) | |
for i in range(img_c): | |
cropped_img[:, :, i] += self.mean[i] | |
y_slice = slice(cropped_center_y - top, cropped_center_y + bottom) | |
x_slice = slice(cropped_center_x - left, cropped_center_x + right) | |
cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :] | |
border = np.array([ | |
cropped_center_y - top, cropped_center_y + bottom, | |
cropped_center_x - left, cropped_center_x + right | |
], | |
dtype=np.float32) | |
return cropped_img, border, patch | |
def _train_aug(self, results): | |
"""Random crop and around padding the original image. | |
Args: | |
results (dict): Image infomations in the augment pipeline. | |
Returns: | |
results (dict): The updated dict. | |
""" | |
img = results['img'] | |
h, w, c = img.shape | |
gt_bboxes = results['gt_bboxes'] | |
while True: | |
scale = random.choice(self.ratios) | |
new_h = int(self.crop_size[1] * scale) | |
new_w = int(self.crop_size[0] * scale) | |
h_border = self._get_border(self.border, h) | |
w_border = self._get_border(self.border, w) | |
for i in range(50): | |
center_x = random.randint(low=w_border, high=w - w_border) | |
center_y = random.randint(low=h_border, high=h - h_border) | |
cropped_img, border, patch = self._crop_image_and_paste( | |
img, [center_y, center_x], [new_h, new_w]) | |
if len(gt_bboxes) == 0: | |
results['img'] = cropped_img | |
results['img_shape'] = cropped_img.shape | |
return results | |
# if image do not have valid bbox, any crop patch is valid. | |
mask = self._filter_boxes(patch, gt_bboxes) | |
if not mask.any(): | |
continue | |
results['img'] = cropped_img | |
results['img_shape'] = cropped_img.shape | |
x0, y0, x1, y1 = patch | |
left_w, top_h = center_x - x0, center_y - y0 | |
cropped_center_x, cropped_center_y = new_w // 2, new_h // 2 | |
# crop bboxes accordingly and clip to the image boundary | |
gt_bboxes = gt_bboxes[mask] | |
gt_bboxes.translate_([ | |
cropped_center_x - left_w - x0, | |
cropped_center_y - top_h - y0 | |
]) | |
if self.bbox_clip_border: | |
gt_bboxes.clip_([new_h, new_w]) | |
keep = gt_bboxes.is_inside([new_h, new_w]).numpy() | |
gt_bboxes = gt_bboxes[keep] | |
results['gt_bboxes'] = gt_bboxes | |
# ignore_flags | |
if results.get('gt_ignore_flags', None) is not None: | |
gt_ignore_flags = results['gt_ignore_flags'][mask] | |
results['gt_ignore_flags'] = \ | |
gt_ignore_flags[keep] | |
# labels | |
if results.get('gt_bboxes_labels', None) is not None: | |
gt_labels = results['gt_bboxes_labels'][mask] | |
results['gt_bboxes_labels'] = gt_labels[keep] | |
if 'gt_masks' in results or 'gt_seg_map' in results: | |
raise NotImplementedError( | |
'RandomCenterCropPad only supports bbox.') | |
return results | |
def _test_aug(self, results): | |
"""Around padding the original image without cropping. | |
The padding mode and value are from ``test_pad_mode``. | |
Args: | |
results (dict): Image infomations in the augment pipeline. | |
Returns: | |
results (dict): The updated dict. | |
""" | |
img = results['img'] | |
h, w, c = img.shape | |
if self.test_pad_mode[0] in ['logical_or']: | |
# self.test_pad_add_pix is only used for centernet | |
target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix | |
target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix | |
elif self.test_pad_mode[0] in ['size_divisor']: | |
divisor = self.test_pad_mode[1] | |
target_h = int(np.ceil(h / divisor)) * divisor | |
target_w = int(np.ceil(w / divisor)) * divisor | |
else: | |
raise NotImplementedError( | |
'RandomCenterCropPad only support two testing pad mode:' | |
'logical-or and size_divisor.') | |
cropped_img, border, _ = self._crop_image_and_paste( | |
img, [h // 2, w // 2], [target_h, target_w]) | |
results['img'] = cropped_img | |
results['img_shape'] = cropped_img.shape | |
results['border'] = border | |
return results | |
def transform(self, results: dict) -> dict: | |
img = results['img'] | |
assert img.dtype == np.float32, ( | |
'RandomCenterCropPad needs the input image of dtype np.float32,' | |
' please set "to_float32=True" in "LoadImageFromFile" pipeline') | |
h, w, c = img.shape | |
assert c == len(self.mean) | |
if self.test_mode: | |
return self._test_aug(results) | |
else: | |
return self._train_aug(results) | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(crop_size={self.crop_size}, ' | |
repr_str += f'ratios={self.ratios}, ' | |
repr_str += f'border={self.border}, ' | |
repr_str += f'mean={self.input_mean}, ' | |
repr_str += f'std={self.input_std}, ' | |
repr_str += f'to_rgb={self.to_rgb}, ' | |
repr_str += f'test_mode={self.test_mode}, ' | |
repr_str += f'test_pad_mode={self.test_pad_mode}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class CutOut(BaseTransform): | |
"""CutOut operation. | |
Randomly drop some regions of image used in | |
`Cutout <https://arxiv.org/abs/1708.04552>`_. | |
Required Keys: | |
- img | |
Modified Keys: | |
- img | |
Args: | |
n_holes (int or tuple[int, int]): Number of regions to be dropped. | |
If it is given as a list, number of holes will be randomly | |
selected from the closed interval [``n_holes[0]``, ``n_holes[1]``]. | |
cutout_shape (tuple[int, int] or list[tuple[int, int]], optional): | |
The candidate shape of dropped regions. It can be | |
``tuple[int, int]`` to use a fixed cutout shape, or | |
``list[tuple[int, int]]`` to randomly choose shape | |
from the list. Defaults to None. | |
cutout_ratio (tuple[float, float] or list[tuple[float, float]], | |
optional): The candidate ratio of dropped regions. It can be | |
``tuple[float, float]`` to use a fixed ratio or | |
``list[tuple[float, float]]`` to randomly choose ratio | |
from the list. Please note that ``cutout_shape`` and | |
``cutout_ratio`` cannot be both given at the same time. | |
Defaults to None. | |
fill_in (tuple[float, float, float] or tuple[int, int, int]): The value | |
of pixel to fill in the dropped regions. Defaults to (0, 0, 0). | |
""" | |
def __init__( | |
self, | |
n_holes: Union[int, Tuple[int, int]], | |
cutout_shape: Optional[Union[Tuple[int, int], | |
List[Tuple[int, int]]]] = None, | |
cutout_ratio: Optional[Union[Tuple[float, float], | |
List[Tuple[float, float]]]] = None, | |
fill_in: Union[Tuple[float, float, float], Tuple[int, int, | |
int]] = (0, 0, 0) | |
) -> None: | |
assert (cutout_shape is None) ^ (cutout_ratio is None), \ | |
'Either cutout_shape or cutout_ratio should be specified.' | |
assert (isinstance(cutout_shape, (list, tuple)) | |
or isinstance(cutout_ratio, (list, tuple))) | |
if isinstance(n_holes, tuple): | |
assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] | |
else: | |
n_holes = (n_holes, n_holes) | |
self.n_holes = n_holes | |
self.fill_in = fill_in | |
self.with_ratio = cutout_ratio is not None | |
self.candidates = cutout_ratio if self.with_ratio else cutout_shape | |
if not isinstance(self.candidates, list): | |
self.candidates = [self.candidates] | |
def transform(self, results: dict) -> dict: | |
"""Call function to drop some regions of image.""" | |
h, w, c = results['img'].shape | |
n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) | |
for _ in range(n_holes): | |
x1 = np.random.randint(0, w) | |
y1 = np.random.randint(0, h) | |
index = np.random.randint(0, len(self.candidates)) | |
if not self.with_ratio: | |
cutout_w, cutout_h = self.candidates[index] | |
else: | |
cutout_w = int(self.candidates[index][0] * w) | |
cutout_h = int(self.candidates[index][1] * h) | |
x2 = np.clip(x1 + cutout_w, 0, w) | |
y2 = np.clip(y1 + cutout_h, 0, h) | |
results['img'][y1:y2, x1:x2, :] = self.fill_in | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(n_holes={self.n_holes}, ' | |
repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio | |
else f'cutout_shape={self.candidates}, ') | |
repr_str += f'fill_in={self.fill_in})' | |
return repr_str | |
class Mosaic(BaseTransform): | |
"""Mosaic augmentation. | |
Given 4 images, mosaic transform combines them into | |
one output image. The output image is composed of the parts from each sub- | |
image. | |
.. code:: text | |
mosaic transform | |
center_x | |
+------------------------------+ | |
| pad | pad | | |
| +-----------+ | | |
| | | | | |
| | image1 |--------+ | | |
| | | | | | |
| | | image2 | | | |
center_y |----+-------------+-----------| | |
| | cropped | | | |
|pad | image3 | image4 | | |
| | | | | |
+----|-------------+-----------+ | |
| | | |
+-------------+ | |
The mosaic transform steps are as follows: | |
1. Choose the mosaic center as the intersections of 4 images | |
2. Get the left top image according to the index, and randomly | |
sample another 3 images from the custom dataset. | |
3. Sub image will be cropped if image is larger than mosaic patch | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- mix_results (List[dict]) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
Args: | |
img_scale (Sequence[int]): Image size after mosaic pipeline of single | |
image. The shape order should be (width, height). | |
Defaults to (640, 640). | |
center_ratio_range (Sequence[float]): Center ratio range of mosaic | |
output. Defaults to (0.5, 1.5). | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
pad_val (int): Pad value. Defaults to 114. | |
prob (float): Probability of applying this transformation. | |
Defaults to 1.0. | |
""" | |
def __init__(self, | |
img_scale: Tuple[int, int] = (640, 640), | |
center_ratio_range: Tuple[float, float] = (0.5, 1.5), | |
bbox_clip_border: bool = True, | |
pad_val: float = 114.0, | |
prob: float = 1.0) -> None: | |
assert isinstance(img_scale, tuple) | |
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \ | |
f'got {prob}.' | |
log_img_scale(img_scale, skip_square=True, shape_order='wh') | |
self.img_scale = img_scale | |
self.center_ratio_range = center_ratio_range | |
self.bbox_clip_border = bbox_clip_border | |
self.pad_val = pad_val | |
self.prob = prob | |
def get_indexes(self, dataset: BaseDataset) -> int: | |
"""Call function to collect indexes. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: indexes. | |
""" | |
indexes = [random.randint(0, len(dataset)) for _ in range(3)] | |
return indexes | |
def transform(self, results: dict) -> dict: | |
"""Mosaic transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
if random.uniform(0, 1) > self.prob: | |
return results | |
assert 'mix_results' in results | |
mosaic_bboxes = [] | |
mosaic_bboxes_labels = [] | |
mosaic_ignore_flags = [] | |
if len(results['img'].shape) == 3: | |
mosaic_img = np.full( | |
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
else: | |
mosaic_img = np.full( | |
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
# mosaic center x, y | |
center_x = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[0]) | |
center_y = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[1]) | |
center_position = (center_x, center_y) | |
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') | |
for i, loc in enumerate(loc_strs): | |
if loc == 'top_left': | |
results_patch = copy.deepcopy(results) | |
else: | |
results_patch = copy.deepcopy(results['mix_results'][i - 1]) | |
img_i = results_patch['img'] | |
h_i, w_i = img_i.shape[:2] | |
# keep_ratio resize | |
scale_ratio_i = min(self.img_scale[1] / h_i, | |
self.img_scale[0] / w_i) | |
img_i = mmcv.imresize( | |
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) | |
# compute the combine parameters | |
paste_coord, crop_coord = self._mosaic_combine( | |
loc, center_position, img_i.shape[:2][::-1]) | |
x1_p, y1_p, x2_p, y2_p = paste_coord | |
x1_c, y1_c, x2_c, y2_c = crop_coord | |
# crop and paste image | |
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] | |
# adjust coordinate | |
gt_bboxes_i = results_patch['gt_bboxes'] | |
gt_bboxes_labels_i = results_patch['gt_bboxes_labels'] | |
gt_ignore_flags_i = results_patch['gt_ignore_flags'] | |
padw = x1_p - x1_c | |
padh = y1_p - y1_c | |
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i]) | |
gt_bboxes_i.translate_([padw, padh]) | |
mosaic_bboxes.append(gt_bboxes_i) | |
mosaic_bboxes_labels.append(gt_bboxes_labels_i) | |
mosaic_ignore_flags.append(gt_ignore_flags_i) | |
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0) | |
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0) | |
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0) | |
if self.bbox_clip_border: | |
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]]) | |
# remove outside bboxes | |
inside_inds = mosaic_bboxes.is_inside( | |
[2 * self.img_scale[1], 2 * self.img_scale[0]]).numpy() | |
mosaic_bboxes = mosaic_bboxes[inside_inds] | |
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds] | |
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds] | |
results['img'] = mosaic_img | |
results['img_shape'] = mosaic_img.shape | |
results['gt_bboxes'] = mosaic_bboxes | |
results['gt_bboxes_labels'] = mosaic_bboxes_labels | |
results['gt_ignore_flags'] = mosaic_ignore_flags | |
return results | |
def _mosaic_combine( | |
self, loc: str, center_position_xy: Sequence[float], | |
img_shape_wh: Sequence[int]) -> Tuple[Tuple[int], Tuple[int]]: | |
"""Calculate global coordinate of mosaic image and local coordinate of | |
cropped sub-image. | |
Args: | |
loc (str): Index for the sub-image, loc in ('top_left', | |
'top_right', 'bottom_left', 'bottom_right'). | |
center_position_xy (Sequence[float]): Mixing center for 4 images, | |
(x, y). | |
img_shape_wh (Sequence[int]): Width and height of sub-image | |
Returns: | |
tuple[tuple[float]]: Corresponding coordinate of pasting and | |
cropping | |
- paste_coord (tuple): paste corner coordinate in mosaic image. | |
- crop_coord (tuple): crop corner coordinate in mosaic image. | |
""" | |
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right') | |
if loc == 'top_left': | |
# index0 to top left part of image | |
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ | |
max(center_position_xy[1] - img_shape_wh[1], 0), \ | |
center_position_xy[0], \ | |
center_position_xy[1] | |
crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - ( | |
y2 - y1), img_shape_wh[0], img_shape_wh[1] | |
elif loc == 'top_right': | |
# index1 to top right part of image | |
x1, y1, x2, y2 = center_position_xy[0], \ | |
max(center_position_xy[1] - img_shape_wh[1], 0), \ | |
min(center_position_xy[0] + img_shape_wh[0], | |
self.img_scale[0] * 2), \ | |
center_position_xy[1] | |
crop_coord = 0, img_shape_wh[1] - (y2 - y1), min( | |
img_shape_wh[0], x2 - x1), img_shape_wh[1] | |
elif loc == 'bottom_left': | |
# index2 to bottom left part of image | |
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ | |
center_position_xy[1], \ | |
center_position_xy[0], \ | |
min(self.img_scale[1] * 2, center_position_xy[1] + | |
img_shape_wh[1]) | |
crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min( | |
y2 - y1, img_shape_wh[1]) | |
else: | |
# index3 to bottom right part of image | |
x1, y1, x2, y2 = center_position_xy[0], \ | |
center_position_xy[1], \ | |
min(center_position_xy[0] + img_shape_wh[0], | |
self.img_scale[0] * 2), \ | |
min(self.img_scale[1] * 2, center_position_xy[1] + | |
img_shape_wh[1]) | |
crop_coord = 0, 0, min(img_shape_wh[0], | |
x2 - x1), min(y2 - y1, img_shape_wh[1]) | |
paste_coord = x1, y1, x2, y2 | |
return paste_coord, crop_coord | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(img_scale={self.img_scale}, ' | |
repr_str += f'center_ratio_range={self.center_ratio_range}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'prob={self.prob})' | |
return repr_str | |
class MixUp(BaseTransform): | |
"""MixUp data augmentation. | |
.. code:: text | |
mixup transform | |
+------------------------------+ | |
| mixup image | | | |
| +--------|--------+ | | |
| | | | | | |
|---------------+ | | | |
| | | | | |
| | image | | | |
| | | | | |
| | | | | |
| |-----------------+ | | |
| pad | | |
+------------------------------+ | |
The mixup transform steps are as follows: | |
1. Another random image is picked by dataset and embedded in | |
the top left patch(after padding and resizing) | |
2. The target of mixup transform is the weighted average of mixup | |
image and origin image. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- mix_results (List[dict]) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
Args: | |
img_scale (Sequence[int]): Image output size after mixup pipeline. | |
The shape order should be (width, height). Defaults to (640, 640). | |
ratio_range (Sequence[float]): Scale ratio of mixup image. | |
Defaults to (0.5, 1.5). | |
flip_ratio (float): Horizontal flip ratio of mixup image. | |
Defaults to 0.5. | |
pad_val (int): Pad value. Defaults to 114. | |
max_iters (int): The maximum number of iterations. If the number of | |
iterations is greater than `max_iters`, but gt_bbox is still | |
empty, then the iteration is terminated. Defaults to 15. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
""" | |
def __init__(self, | |
img_scale: Tuple[int, int] = (640, 640), | |
ratio_range: Tuple[float, float] = (0.5, 1.5), | |
flip_ratio: float = 0.5, | |
pad_val: float = 114.0, | |
max_iters: int = 15, | |
bbox_clip_border: bool = True) -> None: | |
assert isinstance(img_scale, tuple) | |
log_img_scale(img_scale, skip_square=True, shape_order='wh') | |
self.dynamic_scale = img_scale | |
self.ratio_range = ratio_range | |
self.flip_ratio = flip_ratio | |
self.pad_val = pad_val | |
self.max_iters = max_iters | |
self.bbox_clip_border = bbox_clip_border | |
def get_indexes(self, dataset: BaseDataset) -> int: | |
"""Call function to collect indexes. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: indexes. | |
""" | |
for i in range(self.max_iters): | |
index = random.randint(0, len(dataset)) | |
gt_bboxes_i = dataset[index]['gt_bboxes'] | |
if len(gt_bboxes_i) != 0: | |
break | |
return index | |
def transform(self, results: dict) -> dict: | |
"""MixUp transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
assert 'mix_results' in results | |
assert len( | |
results['mix_results']) == 1, 'MixUp only support 2 images now !' | |
if results['mix_results'][0]['gt_bboxes'].shape[0] == 0: | |
# empty bbox | |
return results | |
retrieve_results = results['mix_results'][0] | |
retrieve_img = retrieve_results['img'] | |
jit_factor = random.uniform(*self.ratio_range) | |
is_filp = random.uniform(0, 1) > self.flip_ratio | |
if len(retrieve_img.shape) == 3: | |
out_img = np.ones( | |
(self.dynamic_scale[1], self.dynamic_scale[0], 3), | |
dtype=retrieve_img.dtype) * self.pad_val | |
else: | |
out_img = np.ones( | |
self.dynamic_scale[::-1], | |
dtype=retrieve_img.dtype) * self.pad_val | |
# 1. keep_ratio resize | |
scale_ratio = min(self.dynamic_scale[1] / retrieve_img.shape[0], | |
self.dynamic_scale[0] / retrieve_img.shape[1]) | |
retrieve_img = mmcv.imresize( | |
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio), | |
int(retrieve_img.shape[0] * scale_ratio))) | |
# 2. paste | |
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img | |
# 3. scale jit | |
scale_ratio *= jit_factor | |
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor), | |
int(out_img.shape[0] * jit_factor))) | |
# 4. flip | |
if is_filp: | |
out_img = out_img[:, ::-1, :] | |
# 5. random crop | |
ori_img = results['img'] | |
origin_h, origin_w = out_img.shape[:2] | |
target_h, target_w = ori_img.shape[:2] | |
padded_img = np.ones((max(origin_h, target_h), max( | |
origin_w, target_w), 3)) * self.pad_val | |
padded_img = padded_img.astype(np.uint8) | |
padded_img[:origin_h, :origin_w] = out_img | |
x_offset, y_offset = 0, 0 | |
if padded_img.shape[0] > target_h: | |
y_offset = random.randint(0, padded_img.shape[0] - target_h) | |
if padded_img.shape[1] > target_w: | |
x_offset = random.randint(0, padded_img.shape[1] - target_w) | |
padded_cropped_img = padded_img[y_offset:y_offset + target_h, | |
x_offset:x_offset + target_w] | |
# 6. adjust bbox | |
retrieve_gt_bboxes = retrieve_results['gt_bboxes'] | |
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio]) | |
if self.bbox_clip_border: | |
retrieve_gt_bboxes.clip_([origin_h, origin_w]) | |
if is_filp: | |
retrieve_gt_bboxes.flip_([origin_h, origin_w], | |
direction='horizontal') | |
# 7. filter | |
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone() | |
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset]) | |
if self.bbox_clip_border: | |
cp_retrieve_gt_bboxes.clip_([target_h, target_w]) | |
# 8. mix up | |
ori_img = ori_img.astype(np.float32) | |
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32) | |
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels'] | |
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags'] | |
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat( | |
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0) | |
mixup_gt_bboxes_labels = np.concatenate( | |
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0) | |
mixup_gt_ignore_flags = np.concatenate( | |
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0) | |
# remove outside bbox | |
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy() | |
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds] | |
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds] | |
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds] | |
results['img'] = mixup_img.astype(np.uint8) | |
results['img_shape'] = mixup_img.shape | |
results['gt_bboxes'] = mixup_gt_bboxes | |
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels | |
results['gt_ignore_flags'] = mixup_gt_ignore_flags | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(dynamic_scale={self.dynamic_scale}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'flip_ratio={self.flip_ratio}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'max_iters={self.max_iters}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
class RandomAffine(BaseTransform): | |
"""Random affine transform data augmentation. | |
This operation randomly generates affine transform matrix which including | |
rotation, translation, shear and scaling transforms. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
Args: | |
max_rotate_degree (float): Maximum degrees of rotation transform. | |
Defaults to 10. | |
max_translate_ratio (float): Maximum ratio of translation. | |
Defaults to 0.1. | |
scaling_ratio_range (tuple[float]): Min and max ratio of | |
scaling transform. Defaults to (0.5, 1.5). | |
max_shear_degree (float): Maximum degrees of shear | |
transform. Defaults to 2. | |
border (tuple[int]): Distance from width and height sides of input | |
image to adjust output shape. Only used in mosaic dataset. | |
Defaults to (0, 0). | |
border_val (tuple[int]): Border padding values of 3 channels. | |
Defaults to (114, 114, 114). | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
""" | |
def __init__(self, | |
max_rotate_degree: float = 10.0, | |
max_translate_ratio: float = 0.1, | |
scaling_ratio_range: Tuple[float, float] = (0.5, 1.5), | |
max_shear_degree: float = 2.0, | |
border: Tuple[int, int] = (0, 0), | |
border_val: Tuple[int, int, int] = (114, 114, 114), | |
bbox_clip_border: bool = True) -> None: | |
assert 0 <= max_translate_ratio <= 1 | |
assert scaling_ratio_range[0] <= scaling_ratio_range[1] | |
assert scaling_ratio_range[0] > 0 | |
self.max_rotate_degree = max_rotate_degree | |
self.max_translate_ratio = max_translate_ratio | |
self.scaling_ratio_range = scaling_ratio_range | |
self.max_shear_degree = max_shear_degree | |
self.border = border | |
self.border_val = border_val | |
self.bbox_clip_border = bbox_clip_border | |
def _get_random_homography_matrix(self, height, width): | |
# Rotation | |
rotation_degree = random.uniform(-self.max_rotate_degree, | |
self.max_rotate_degree) | |
rotation_matrix = self._get_rotation_matrix(rotation_degree) | |
# Scaling | |
scaling_ratio = random.uniform(self.scaling_ratio_range[0], | |
self.scaling_ratio_range[1]) | |
scaling_matrix = self._get_scaling_matrix(scaling_ratio) | |
# Shear | |
x_degree = random.uniform(-self.max_shear_degree, | |
self.max_shear_degree) | |
y_degree = random.uniform(-self.max_shear_degree, | |
self.max_shear_degree) | |
shear_matrix = self._get_shear_matrix(x_degree, y_degree) | |
# Translation | |
trans_x = random.uniform(-self.max_translate_ratio, | |
self.max_translate_ratio) * width | |
trans_y = random.uniform(-self.max_translate_ratio, | |
self.max_translate_ratio) * height | |
translate_matrix = self._get_translation_matrix(trans_x, trans_y) | |
warp_matrix = ( | |
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix) | |
return warp_matrix | |
def transform(self, results: dict) -> dict: | |
img = results['img'] | |
height = img.shape[0] + self.border[1] * 2 | |
width = img.shape[1] + self.border[0] * 2 | |
warp_matrix = self._get_random_homography_matrix(height, width) | |
img = cv2.warpPerspective( | |
img, | |
warp_matrix, | |
dsize=(width, height), | |
borderValue=self.border_val) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
bboxes = results['gt_bboxes'] | |
num_bboxes = len(bboxes) | |
if num_bboxes: | |
bboxes.project_(warp_matrix) | |
if self.bbox_clip_border: | |
bboxes.clip_([height, width]) | |
# remove outside bbox | |
valid_index = bboxes.is_inside([height, width]).numpy() | |
results['gt_bboxes'] = bboxes[valid_index] | |
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][ | |
valid_index] | |
results['gt_ignore_flags'] = results['gt_ignore_flags'][ | |
valid_index] | |
if 'gt_masks' in results: | |
raise NotImplementedError('RandomAffine only supports bbox.') | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, ' | |
repr_str += f'max_translate_ratio={self.max_translate_ratio}, ' | |
repr_str += f'scaling_ratio_range={self.scaling_ratio_range}, ' | |
repr_str += f'max_shear_degree={self.max_shear_degree}, ' | |
repr_str += f'border={self.border}, ' | |
repr_str += f'border_val={self.border_val}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border})' | |
return repr_str | |
def _get_rotation_matrix(rotate_degrees: float) -> np.ndarray: | |
radian = math.radians(rotate_degrees) | |
rotation_matrix = np.array( | |
[[np.cos(radian), -np.sin(radian), 0.], | |
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return rotation_matrix | |
def _get_scaling_matrix(scale_ratio: float) -> np.ndarray: | |
scaling_matrix = np.array( | |
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return scaling_matrix | |
def _get_shear_matrix(x_shear_degrees: float, | |
y_shear_degrees: float) -> np.ndarray: | |
x_radian = math.radians(x_shear_degrees) | |
y_radian = math.radians(y_shear_degrees) | |
shear_matrix = np.array([[1, np.tan(x_radian), 0.], | |
[np.tan(y_radian), 1, 0.], [0., 0., 1.]], | |
dtype=np.float32) | |
return shear_matrix | |
def _get_translation_matrix(x: float, y: float) -> np.ndarray: | |
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]], | |
dtype=np.float32) | |
return translation_matrix | |
class YOLOXHSVRandomAug(BaseTransform): | |
"""Apply HSV augmentation to image sequentially. It is referenced from | |
https://github.com/Megvii- | |
BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21. | |
Required Keys: | |
- img | |
Modified Keys: | |
- img | |
Args: | |
hue_delta (int): delta of hue. Defaults to 5. | |
saturation_delta (int): delta of saturation. Defaults to 30. | |
value_delta (int): delat of value. Defaults to 30. | |
""" | |
def __init__(self, | |
hue_delta: int = 5, | |
saturation_delta: int = 30, | |
value_delta: int = 30) -> None: | |
self.hue_delta = hue_delta | |
self.saturation_delta = saturation_delta | |
self.value_delta = value_delta | |
def _get_hsv_gains(self): | |
hsv_gains = np.random.uniform(-1, 1, 3) * [ | |
self.hue_delta, self.saturation_delta, self.value_delta | |
] | |
# random selection of h, s, v | |
hsv_gains *= np.random.randint(0, 2, 3) | |
# prevent overflow | |
hsv_gains = hsv_gains.astype(np.int16) | |
return hsv_gains | |
def transform(self, results: dict) -> dict: | |
img = results['img'] | |
hsv_gains = self._get_hsv_gains() | |
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16) | |
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180 | |
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255) | |
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255) | |
cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img) | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(hue_delta={self.hue_delta}, ' | |
repr_str += f'saturation_delta={self.saturation_delta}, ' | |
repr_str += f'value_delta={self.value_delta})' | |
return repr_str | |
class CopyPaste(BaseTransform): | |
"""Simple Copy-Paste is a Strong Data Augmentation Method for Instance | |
Segmentation The simple copy-paste transform steps are as follows: | |
1. The destination image is already resized with aspect ratio kept, | |
cropped and padded. | |
2. Randomly select a source image, which is also already resized | |
with aspect ratio kept, cropped and padded in a similar way | |
as the destination image. | |
3. Randomly select some objects from the source image. | |
4. Paste these source objects to the destination image directly, | |
due to the source and destination image have the same size. | |
5. Update object masks of the destination image, for some origin objects | |
may be occluded. | |
6. Generate bboxes from the updated destination masks and | |
filter some objects which are totally occluded, and adjust bboxes | |
which are partly occluded. | |
7. Append selected source bboxes, masks, and labels. | |
Required Keys: | |
- img | |
- gt_bboxes (BaseBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- gt_masks (BitmapMasks) (optional) | |
Modified Keys: | |
- img | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
- gt_masks (optional) | |
Args: | |
max_num_pasted (int): The maximum number of pasted objects. | |
Defaults to 100. | |
bbox_occluded_thr (int): The threshold of occluded bbox. | |
Defaults to 10. | |
mask_occluded_thr (int): The threshold of occluded mask. | |
Defaults to 300. | |
selected (bool): Whether select objects or not. If select is False, | |
all objects of the source image will be pasted to the | |
destination image. | |
Defaults to True. | |
""" | |
def __init__( | |
self, | |
max_num_pasted: int = 100, | |
bbox_occluded_thr: int = 10, | |
mask_occluded_thr: int = 300, | |
selected: bool = True, | |
) -> None: | |
self.max_num_pasted = max_num_pasted | |
self.bbox_occluded_thr = bbox_occluded_thr | |
self.mask_occluded_thr = mask_occluded_thr | |
self.selected = selected | |
def get_indexes(self, dataset: BaseDataset) -> int: | |
"""Call function to collect indexes.s. | |
Args: | |
dataset (:obj:`MultiImageMixDataset`): The dataset. | |
Returns: | |
list: Indexes. | |
""" | |
return random.randint(0, len(dataset)) | |
def transform(self, results: dict) -> dict: | |
"""Transform function to make a copy-paste of image. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Result dict with copy-paste transformed. | |
""" | |
assert 'mix_results' in results | |
num_images = len(results['mix_results']) | |
assert num_images == 1, \ | |
f'CopyPaste only supports processing 2 images, got {num_images}' | |
if self.selected: | |
selected_results = self._select_object(results['mix_results'][0]) | |
else: | |
selected_results = results['mix_results'][0] | |
return self._copy_paste(results, selected_results) | |
def _get_selected_inds(self, num_bboxes: int) -> np.ndarray: | |
max_num_pasted = min(num_bboxes + 1, self.max_num_pasted) | |
num_pasted = np.random.randint(0, max_num_pasted) | |
return np.random.choice(num_bboxes, size=num_pasted, replace=False) | |
def _select_object(self, results: dict) -> dict: | |
"""Select some objects from the source results.""" | |
bboxes = results['gt_bboxes'] | |
labels = results['gt_bboxes_labels'] | |
masks = results['gt_masks'] | |
ignore_flags = results['gt_ignore_flags'] | |
selected_inds = self._get_selected_inds(bboxes.shape[0]) | |
selected_bboxes = bboxes[selected_inds] | |
selected_labels = labels[selected_inds] | |
selected_masks = masks[selected_inds] | |
selected_ignore_flags = ignore_flags[selected_inds] | |
results['gt_bboxes'] = selected_bboxes | |
results['gt_bboxes_labels'] = selected_labels | |
results['gt_masks'] = selected_masks | |
results['gt_ignore_flags'] = selected_ignore_flags | |
return results | |
def _copy_paste(self, dst_results: dict, src_results: dict) -> dict: | |
"""CopyPaste transform function. | |
Args: | |
dst_results (dict): Result dict of the destination image. | |
src_results (dict): Result dict of the source image. | |
Returns: | |
dict: Updated result dict. | |
""" | |
dst_img = dst_results['img'] | |
dst_bboxes = dst_results['gt_bboxes'] | |
dst_labels = dst_results['gt_bboxes_labels'] | |
dst_masks = dst_results['gt_masks'] | |
dst_ignore_flags = dst_results['gt_ignore_flags'] | |
src_img = src_results['img'] | |
src_bboxes = src_results['gt_bboxes'] | |
src_labels = src_results['gt_bboxes_labels'] | |
src_masks = src_results['gt_masks'] | |
src_ignore_flags = src_results['gt_ignore_flags'] | |
if len(src_bboxes) == 0: | |
return dst_results | |
# update masks and generate bboxes from updated masks | |
composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0) | |
updated_dst_masks = self._get_updated_masks(dst_masks, composed_mask) | |
updated_dst_bboxes = updated_dst_masks.get_bboxes(type(dst_bboxes)) | |
assert len(updated_dst_bboxes) == len(updated_dst_masks) | |
# filter totally occluded objects | |
l1_distance = (updated_dst_bboxes.tensor - dst_bboxes.tensor).abs() | |
bboxes_inds = (l1_distance <= self.bbox_occluded_thr).all( | |
dim=-1).numpy() | |
masks_inds = updated_dst_masks.masks.sum( | |
axis=(1, 2)) > self.mask_occluded_thr | |
valid_inds = bboxes_inds | masks_inds | |
# Paste source objects to destination image directly | |
img = dst_img * (1 - composed_mask[..., np.newaxis] | |
) + src_img * composed_mask[..., np.newaxis] | |
bboxes = src_bboxes.cat([updated_dst_bboxes[valid_inds], src_bboxes]) | |
labels = np.concatenate([dst_labels[valid_inds], src_labels]) | |
masks = np.concatenate( | |
[updated_dst_masks.masks[valid_inds], src_masks.masks]) | |
ignore_flags = np.concatenate( | |
[dst_ignore_flags[valid_inds], src_ignore_flags]) | |
dst_results['img'] = img | |
dst_results['gt_bboxes'] = bboxes | |
dst_results['gt_bboxes_labels'] = labels | |
dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1], | |
masks.shape[2]) | |
dst_results['gt_ignore_flags'] = ignore_flags | |
return dst_results | |
def _get_updated_masks(self, masks: BitmapMasks, | |
composed_mask: np.ndarray) -> BitmapMasks: | |
"""Update masks with composed mask.""" | |
assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \ | |
'Cannot compare two arrays of different size' | |
masks.masks = np.where(composed_mask, 0, masks.masks) | |
return masks | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(max_num_pasted={self.max_num_pasted}, ' | |
repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, ' | |
repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, ' | |
repr_str += f'selected={self.selected})' | |
return repr_str | |
class RandomErasing(BaseTransform): | |
"""RandomErasing operation. | |
Random Erasing randomly selects a rectangle region | |
in an image and erases its pixels with random values. | |
`RandomErasing <https://arxiv.org/abs/1708.04896>`_. | |
Required Keys: | |
- img | |
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- gt_masks (BitmapMasks) (optional) | |
Modified Keys: | |
- img | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
- gt_masks (optional) | |
Args: | |
n_patches (int or tuple[int, int]): Number of regions to be dropped. | |
If it is given as a tuple, number of patches will be randomly | |
selected from the closed interval [``n_patches[0]``, | |
``n_patches[1]``]. | |
ratio (float or tuple[float, float]): The ratio of erased regions. | |
It can be ``float`` to use a fixed ratio or ``tuple[float, float]`` | |
to randomly choose ratio from the interval. | |
squared (bool): Whether to erase square region. Defaults to True. | |
bbox_erased_thr (float): The threshold for the maximum area proportion | |
of the bbox to be erased. When the proportion of the area where the | |
bbox is erased is greater than the threshold, the bbox will be | |
removed. Defaults to 0.9. | |
img_border_value (int or float or tuple): The filled values for | |
image border. If float, the same fill value will be used for | |
all the three channels of image. If tuple, it should be 3 elements. | |
Defaults to 128. | |
mask_border_value (int): The fill value used for masks. Defaults to 0. | |
seg_ignore_label (int): The fill value used for segmentation map. | |
Note this value must equals ``ignore_label`` in ``semantic_head`` | |
of the corresponding config. Defaults to 255. | |
""" | |
def __init__( | |
self, | |
n_patches: Union[int, Tuple[int, int]], | |
ratio: Union[float, Tuple[float, float]], | |
squared: bool = True, | |
bbox_erased_thr: float = 0.9, | |
img_border_value: Union[int, float, tuple] = 128, | |
mask_border_value: int = 0, | |
seg_ignore_label: int = 255, | |
) -> None: | |
if isinstance(n_patches, tuple): | |
assert len(n_patches) == 2 and 0 <= n_patches[0] < n_patches[1] | |
else: | |
n_patches = (n_patches, n_patches) | |
if isinstance(ratio, tuple): | |
assert len(ratio) == 2 and 0 <= ratio[0] < ratio[1] <= 1 | |
else: | |
ratio = (ratio, ratio) | |
self.n_patches = n_patches | |
self.ratio = ratio | |
self.squared = squared | |
self.bbox_erased_thr = bbox_erased_thr | |
self.img_border_value = img_border_value | |
self.mask_border_value = mask_border_value | |
self.seg_ignore_label = seg_ignore_label | |
def _get_patches(self, img_shape: Tuple[int, int]) -> List[list]: | |
"""Get patches for random erasing.""" | |
patches = [] | |
n_patches = np.random.randint(self.n_patches[0], self.n_patches[1] + 1) | |
for _ in range(n_patches): | |
if self.squared: | |
ratio = np.random.random() * (self.ratio[1] - | |
self.ratio[0]) + self.ratio[0] | |
ratio = (ratio, ratio) | |
else: | |
ratio = (np.random.random() * (self.ratio[1] - self.ratio[0]) + | |
self.ratio[0], np.random.random() * | |
(self.ratio[1] - self.ratio[0]) + self.ratio[0]) | |
ph, pw = int(img_shape[0] * ratio[0]), int(img_shape[1] * ratio[1]) | |
px1, py1 = np.random.randint(0, | |
img_shape[1] - pw), np.random.randint( | |
0, img_shape[0] - ph) | |
px2, py2 = px1 + pw, py1 + ph | |
patches.append([px1, py1, px2, py2]) | |
return np.array(patches) | |
def _transform_img(self, results: dict, patches: List[list]) -> None: | |
"""Random erasing the image.""" | |
for patch in patches: | |
px1, py1, px2, py2 = patch | |
results['img'][py1:py2, px1:px2, :] = self.img_border_value | |
def _transform_bboxes(self, results: dict, patches: List[list]) -> None: | |
"""Random erasing the bboxes.""" | |
bboxes = results['gt_bboxes'] | |
# TODO: unify the logic by using operators in BaseBoxes. | |
assert isinstance(bboxes, HorizontalBoxes) | |
bboxes = bboxes.numpy() | |
left_top = np.maximum(bboxes[:, None, :2], patches[:, :2]) | |
right_bottom = np.minimum(bboxes[:, None, 2:], patches[:, 2:]) | |
wh = np.maximum(right_bottom - left_top, 0) | |
inter_areas = wh[:, :, 0] * wh[:, :, 1] | |
bbox_areas = (bboxes[:, 2] - bboxes[:, 0]) * ( | |
bboxes[:, 3] - bboxes[:, 1]) | |
bboxes_erased_ratio = inter_areas.sum(-1) / (bbox_areas + 1e-7) | |
valid_inds = bboxes_erased_ratio < self.bbox_erased_thr | |
results['gt_bboxes'] = HorizontalBoxes(bboxes[valid_inds]) | |
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][valid_inds] | |
results['gt_ignore_flags'] = results['gt_ignore_flags'][valid_inds] | |
if results.get('gt_masks', None) is not None: | |
results['gt_masks'] = results['gt_masks'][valid_inds] | |
def _transform_masks(self, results: dict, patches: List[list]) -> None: | |
"""Random erasing the masks.""" | |
for patch in patches: | |
px1, py1, px2, py2 = patch | |
results['gt_masks'].masks[:, py1:py2, | |
px1:px2] = self.mask_border_value | |
def _transform_seg(self, results: dict, patches: List[list]) -> None: | |
"""Random erasing the segmentation map.""" | |
for patch in patches: | |
px1, py1, px2, py2 = patch | |
results['gt_seg_map'][py1:py2, px1:px2] = self.seg_ignore_label | |
def transform(self, results: dict) -> dict: | |
"""Transform function to erase some regions of image.""" | |
patches = self._get_patches(results['img_shape']) | |
self._transform_img(results, patches) | |
if results.get('gt_bboxes', None) is not None: | |
self._transform_bboxes(results, patches) | |
if results.get('gt_masks', None) is not None: | |
self._transform_masks(results, patches) | |
if results.get('gt_seg_map', None) is not None: | |
self._transform_seg(results, patches) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(n_patches={self.n_patches}, ' | |
repr_str += f'ratio={self.ratio}, ' | |
repr_str += f'squared={self.squared}, ' | |
repr_str += f'bbox_erased_thr={self.bbox_erased_thr}, ' | |
repr_str += f'img_border_value={self.img_border_value}, ' | |
repr_str += f'mask_border_value={self.mask_border_value}, ' | |
repr_str += f'seg_ignore_label={self.seg_ignore_label})' | |
return repr_str | |
class CachedMosaic(Mosaic): | |
"""Cached mosaic augmentation. | |
Cached mosaic transform will random select images from the cache | |
and combine them into one output image. | |
.. code:: text | |
mosaic transform | |
center_x | |
+------------------------------+ | |
| pad | pad | | |
| +-----------+ | | |
| | | | | |
| | image1 |--------+ | | |
| | | | | | |
| | | image2 | | | |
center_y |----+-------------+-----------| | |
| | cropped | | | |
|pad | image3 | image4 | | |
| | | | | |
+----|-------------+-----------+ | |
| | | |
+-------------+ | |
The cached mosaic transform steps are as follows: | |
1. Append the results from the last transform into the cache. | |
2. Choose the mosaic center as the intersections of 4 images | |
3. Get the left top image according to the index, and randomly | |
sample another 3 images from the result cache. | |
4. Sub image will be cropped if image is larger than mosaic patch | |
Required Keys: | |
- img | |
- gt_bboxes (np.float32) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
Args: | |
img_scale (Sequence[int]): Image size after mosaic pipeline of single | |
image. The shape order should be (width, height). | |
Defaults to (640, 640). | |
center_ratio_range (Sequence[float]): Center ratio range of mosaic | |
output. Defaults to (0.5, 1.5). | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
pad_val (int): Pad value. Defaults to 114. | |
prob (float): Probability of applying this transformation. | |
Defaults to 1.0. | |
max_cached_images (int): The maximum length of the cache. The larger | |
the cache, the stronger the randomness of this transform. As a | |
rule of thumb, providing 10 caches for each image suffices for | |
randomness. Defaults to 40. | |
random_pop (bool): Whether to randomly pop a result from the cache | |
when the cache is full. If set to False, use FIFO popping method. | |
Defaults to True. | |
""" | |
def __init__(self, | |
*args, | |
max_cached_images: int = 40, | |
random_pop: bool = True, | |
**kwargs) -> None: | |
super().__init__(*args, **kwargs) | |
self.results_cache = [] | |
self.random_pop = random_pop | |
assert max_cached_images >= 4, 'The length of cache must >= 4, ' \ | |
f'but got {max_cached_images}.' | |
self.max_cached_images = max_cached_images | |
def get_indexes(self, cache: list) -> list: | |
"""Call function to collect indexes. | |
Args: | |
cache (list): The results cache. | |
Returns: | |
list: indexes. | |
""" | |
indexes = [random.randint(0, len(cache) - 1) for _ in range(3)] | |
return indexes | |
def transform(self, results: dict) -> dict: | |
"""Mosaic transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
# cache and pop images | |
self.results_cache.append(copy.deepcopy(results)) | |
if len(self.results_cache) > self.max_cached_images: | |
if self.random_pop: | |
index = random.randint(0, len(self.results_cache) - 1) | |
else: | |
index = 0 | |
self.results_cache.pop(index) | |
if len(self.results_cache) <= 4: | |
return results | |
if random.uniform(0, 1) > self.prob: | |
return results | |
indices = self.get_indexes(self.results_cache) | |
mix_results = [copy.deepcopy(self.results_cache[i]) for i in indices] | |
# TODO: refactor mosaic to reuse these code. | |
mosaic_bboxes = [] | |
mosaic_bboxes_labels = [] | |
mosaic_ignore_flags = [] | |
mosaic_masks = [] | |
with_mask = True if 'gt_masks' in results else False | |
if len(results['img'].shape) == 3: | |
mosaic_img = np.full( | |
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
else: | |
mosaic_img = np.full( | |
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)), | |
self.pad_val, | |
dtype=results['img'].dtype) | |
# mosaic center x, y | |
center_x = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[0]) | |
center_y = int( | |
random.uniform(*self.center_ratio_range) * self.img_scale[1]) | |
center_position = (center_x, center_y) | |
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') | |
for i, loc in enumerate(loc_strs): | |
if loc == 'top_left': | |
results_patch = copy.deepcopy(results) | |
else: | |
results_patch = copy.deepcopy(mix_results[i - 1]) | |
img_i = results_patch['img'] | |
h_i, w_i = img_i.shape[:2] | |
# keep_ratio resize | |
scale_ratio_i = min(self.img_scale[1] / h_i, | |
self.img_scale[0] / w_i) | |
img_i = mmcv.imresize( | |
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) | |
# compute the combine parameters | |
paste_coord, crop_coord = self._mosaic_combine( | |
loc, center_position, img_i.shape[:2][::-1]) | |
x1_p, y1_p, x2_p, y2_p = paste_coord | |
x1_c, y1_c, x2_c, y2_c = crop_coord | |
# crop and paste image | |
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] | |
# adjust coordinate | |
gt_bboxes_i = results_patch['gt_bboxes'] | |
gt_bboxes_labels_i = results_patch['gt_bboxes_labels'] | |
gt_ignore_flags_i = results_patch['gt_ignore_flags'] | |
padw = x1_p - x1_c | |
padh = y1_p - y1_c | |
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i]) | |
gt_bboxes_i.translate_([padw, padh]) | |
mosaic_bboxes.append(gt_bboxes_i) | |
mosaic_bboxes_labels.append(gt_bboxes_labels_i) | |
mosaic_ignore_flags.append(gt_ignore_flags_i) | |
if with_mask and results_patch.get('gt_masks', None) is not None: | |
gt_masks_i = results_patch['gt_masks'] | |
gt_masks_i = gt_masks_i.rescale(float(scale_ratio_i)) | |
gt_masks_i = gt_masks_i.translate( | |
out_shape=(int(self.img_scale[0] * 2), | |
int(self.img_scale[1] * 2)), | |
offset=padw, | |
direction='horizontal') | |
gt_masks_i = gt_masks_i.translate( | |
out_shape=(int(self.img_scale[0] * 2), | |
int(self.img_scale[1] * 2)), | |
offset=padh, | |
direction='vertical') | |
mosaic_masks.append(gt_masks_i) | |
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0) | |
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0) | |
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0) | |
if self.bbox_clip_border: | |
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]]) | |
# remove outside bboxes | |
inside_inds = mosaic_bboxes.is_inside( | |
[2 * self.img_scale[1], 2 * self.img_scale[0]]).numpy() | |
mosaic_bboxes = mosaic_bboxes[inside_inds] | |
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds] | |
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds] | |
results['img'] = mosaic_img | |
results['img_shape'] = mosaic_img.shape | |
results['gt_bboxes'] = mosaic_bboxes | |
results['gt_bboxes_labels'] = mosaic_bboxes_labels | |
results['gt_ignore_flags'] = mosaic_ignore_flags | |
if with_mask: | |
mosaic_masks = mosaic_masks[0].cat(mosaic_masks) | |
results['gt_masks'] = mosaic_masks[inside_inds] | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(img_scale={self.img_scale}, ' | |
repr_str += f'center_ratio_range={self.center_ratio_range}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'prob={self.prob}, ' | |
repr_str += f'max_cached_images={self.max_cached_images}, ' | |
repr_str += f'random_pop={self.random_pop})' | |
return repr_str | |
class CachedMixUp(BaseTransform): | |
"""Cached mixup data augmentation. | |
.. code:: text | |
mixup transform | |
+------------------------------+ | |
| mixup image | | | |
| +--------|--------+ | | |
| | | | | | |
|---------------+ | | | |
| | | | | |
| | image | | | |
| | | | | |
| | | | | |
| |-----------------+ | | |
| pad | | |
+------------------------------+ | |
The cached mixup transform steps are as follows: | |
1. Append the results from the last transform into the cache. | |
2. Another random image is picked from the cache and embedded in | |
the top left patch(after padding and resizing) | |
3. The target of mixup transform is the weighted average of mixup | |
image and origin image. | |
Required Keys: | |
- img | |
- gt_bboxes (np.float32) (optional) | |
- gt_bboxes_labels (np.int64) (optional) | |
- gt_ignore_flags (bool) (optional) | |
- mix_results (List[dict]) | |
Modified Keys: | |
- img | |
- img_shape | |
- gt_bboxes (optional) | |
- gt_bboxes_labels (optional) | |
- gt_ignore_flags (optional) | |
Args: | |
img_scale (Sequence[int]): Image output size after mixup pipeline. | |
The shape order should be (width, height). Defaults to (640, 640). | |
ratio_range (Sequence[float]): Scale ratio of mixup image. | |
Defaults to (0.5, 1.5). | |
flip_ratio (float): Horizontal flip ratio of mixup image. | |
Defaults to 0.5. | |
pad_val (int): Pad value. Defaults to 114. | |
max_iters (int): The maximum number of iterations. If the number of | |
iterations is greater than `max_iters`, but gt_bbox is still | |
empty, then the iteration is terminated. Defaults to 15. | |
bbox_clip_border (bool, optional): Whether to clip the objects outside | |
the border of the image. In some dataset like MOT17, the gt bboxes | |
are allowed to cross the border of images. Therefore, we don't | |
need to clip the gt bboxes in these cases. Defaults to True. | |
max_cached_images (int): The maximum length of the cache. The larger | |
the cache, the stronger the randomness of this transform. As a | |
rule of thumb, providing 10 caches for each image suffices for | |
randomness. Defaults to 20. | |
random_pop (bool): Whether to randomly pop a result from the cache | |
when the cache is full. If set to False, use FIFO popping method. | |
Defaults to True. | |
prob (float): Probability of applying this transformation. | |
Defaults to 1.0. | |
""" | |
def __init__(self, | |
img_scale: Tuple[int, int] = (640, 640), | |
ratio_range: Tuple[float, float] = (0.5, 1.5), | |
flip_ratio: float = 0.5, | |
pad_val: float = 114.0, | |
max_iters: int = 15, | |
bbox_clip_border: bool = True, | |
max_cached_images: int = 20, | |
random_pop: bool = True, | |
prob: float = 1.0) -> None: | |
assert isinstance(img_scale, tuple) | |
assert max_cached_images >= 2, 'The length of cache must >= 2, ' \ | |
f'but got {max_cached_images}.' | |
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \ | |
f'got {prob}.' | |
self.dynamic_scale = img_scale | |
self.ratio_range = ratio_range | |
self.flip_ratio = flip_ratio | |
self.pad_val = pad_val | |
self.max_iters = max_iters | |
self.bbox_clip_border = bbox_clip_border | |
self.results_cache = [] | |
self.max_cached_images = max_cached_images | |
self.random_pop = random_pop | |
self.prob = prob | |
def get_indexes(self, cache: list) -> int: | |
"""Call function to collect indexes. | |
Args: | |
cache (list): The result cache. | |
Returns: | |
int: index. | |
""" | |
for i in range(self.max_iters): | |
index = random.randint(0, len(cache) - 1) | |
gt_bboxes_i = cache[index]['gt_bboxes'] | |
if len(gt_bboxes_i) != 0: | |
break | |
return index | |
def transform(self, results: dict) -> dict: | |
"""MixUp transform function. | |
Args: | |
results (dict): Result dict. | |
Returns: | |
dict: Updated result dict. | |
""" | |
# cache and pop images | |
self.results_cache.append(copy.deepcopy(results)) | |
if len(self.results_cache) > self.max_cached_images: | |
if self.random_pop: | |
index = random.randint(0, len(self.results_cache) - 1) | |
else: | |
index = 0 | |
self.results_cache.pop(index) | |
if len(self.results_cache) <= 1: | |
return results | |
if random.uniform(0, 1) > self.prob: | |
return results | |
index = self.get_indexes(self.results_cache) | |
retrieve_results = copy.deepcopy(self.results_cache[index]) | |
# TODO: refactor mixup to reuse these code. | |
if retrieve_results['gt_bboxes'].shape[0] == 0: | |
# empty bbox | |
return results | |
retrieve_img = retrieve_results['img'] | |
with_mask = True if 'gt_masks' in results else False | |
jit_factor = random.uniform(*self.ratio_range) | |
is_filp = random.uniform(0, 1) > self.flip_ratio | |
if len(retrieve_img.shape) == 3: | |
out_img = np.ones( | |
(self.dynamic_scale[1], self.dynamic_scale[0], 3), | |
dtype=retrieve_img.dtype) * self.pad_val | |
else: | |
out_img = np.ones( | |
self.dynamic_scale[::-1], | |
dtype=retrieve_img.dtype) * self.pad_val | |
# 1. keep_ratio resize | |
scale_ratio = min(self.dynamic_scale[1] / retrieve_img.shape[0], | |
self.dynamic_scale[0] / retrieve_img.shape[1]) | |
retrieve_img = mmcv.imresize( | |
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio), | |
int(retrieve_img.shape[0] * scale_ratio))) | |
# 2. paste | |
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img | |
# 3. scale jit | |
scale_ratio *= jit_factor | |
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor), | |
int(out_img.shape[0] * jit_factor))) | |
# 4. flip | |
if is_filp: | |
out_img = out_img[:, ::-1, :] | |
# 5. random crop | |
ori_img = results['img'] | |
origin_h, origin_w = out_img.shape[:2] | |
target_h, target_w = ori_img.shape[:2] | |
padded_img = np.ones((max(origin_h, target_h), max( | |
origin_w, target_w), 3)) * self.pad_val | |
padded_img = padded_img.astype(np.uint8) | |
padded_img[:origin_h, :origin_w] = out_img | |
x_offset, y_offset = 0, 0 | |
if padded_img.shape[0] > target_h: | |
y_offset = random.randint(0, padded_img.shape[0] - target_h) | |
if padded_img.shape[1] > target_w: | |
x_offset = random.randint(0, padded_img.shape[1] - target_w) | |
padded_cropped_img = padded_img[y_offset:y_offset + target_h, | |
x_offset:x_offset + target_w] | |
# 6. adjust bbox | |
retrieve_gt_bboxes = retrieve_results['gt_bboxes'] | |
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio]) | |
if with_mask: | |
retrieve_gt_masks = retrieve_results['gt_masks'].rescale( | |
scale_ratio) | |
if self.bbox_clip_border: | |
retrieve_gt_bboxes.clip_([origin_h, origin_w]) | |
if is_filp: | |
retrieve_gt_bboxes.flip_([origin_h, origin_w], | |
direction='horizontal') | |
if with_mask: | |
retrieve_gt_masks = retrieve_gt_masks.flip() | |
# 7. filter | |
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone() | |
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset]) | |
if with_mask: | |
retrieve_gt_masks = retrieve_gt_masks.translate( | |
out_shape=(target_h, target_w), | |
offset=-x_offset, | |
direction='horizontal') | |
retrieve_gt_masks = retrieve_gt_masks.translate( | |
out_shape=(target_h, target_w), | |
offset=-y_offset, | |
direction='vertical') | |
if self.bbox_clip_border: | |
cp_retrieve_gt_bboxes.clip_([target_h, target_w]) | |
# 8. mix up | |
ori_img = ori_img.astype(np.float32) | |
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32) | |
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels'] | |
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags'] | |
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat( | |
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0) | |
mixup_gt_bboxes_labels = np.concatenate( | |
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0) | |
mixup_gt_ignore_flags = np.concatenate( | |
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0) | |
if with_mask: | |
mixup_gt_masks = retrieve_gt_masks.cat( | |
[results['gt_masks'], retrieve_gt_masks]) | |
# remove outside bbox | |
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy() | |
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds] | |
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds] | |
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds] | |
if with_mask: | |
mixup_gt_masks = mixup_gt_masks[inside_inds] | |
results['img'] = mixup_img.astype(np.uint8) | |
results['img_shape'] = mixup_img.shape | |
results['gt_bboxes'] = mixup_gt_bboxes | |
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels | |
results['gt_ignore_flags'] = mixup_gt_ignore_flags | |
if with_mask: | |
results['gt_masks'] = mixup_gt_masks | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(dynamic_scale={self.dynamic_scale}, ' | |
repr_str += f'ratio_range={self.ratio_range}, ' | |
repr_str += f'flip_ratio={self.flip_ratio}, ' | |
repr_str += f'pad_val={self.pad_val}, ' | |
repr_str += f'max_iters={self.max_iters}, ' | |
repr_str += f'bbox_clip_border={self.bbox_clip_border}, ' | |
repr_str += f'max_cached_images={self.max_cached_images}, ' | |
repr_str += f'random_pop={self.random_pop}, ' | |
repr_str += f'prob={self.prob})' | |
return repr_str | |