ai-photo-gallery / configs /rtmdet /rtmdet_l_8xb32-300e_coco.py
KyanChen's picture
init
f549064
raw
history blame
5.3 kB
_base_ = [
'../_base_/default_runtime_det.py', '../_base_/schedules/schedule_1x.py',
'../_base_/datasets/coco_detection.py', './rtmdet_tta.py'
]
model = dict(
type='RTMDet',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
bgr_to_rgb=False,
batch_augments=None),
backbone=dict(
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=1,
widen_factor=1,
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU', inplace=True)),
neck=dict(
type='CSPNeXtPAFPN',
in_channels=[256, 512, 1024],
out_channels=256,
num_csp_blocks=3,
expand_ratio=0.5,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU', inplace=True)),
bbox_head=dict(
type='RTMDetSepBNHead',
num_classes=80,
in_channels=256,
stacked_convs=2,
feat_channels=256,
anchor_generator=dict(
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
bbox_coder=dict(type='DistancePointBBoxCoder'),
loss_cls=dict(
type='QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
with_objectness=False,
exp_on_reg=True,
share_conv=True,
pred_kernel_size=1,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU', inplace=True)),
train_cfg=dict(
assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=30000,
min_bbox_size=0,
score_thr=0.001,
nms=dict(type='nms', iou_threshold=0.65),
max_per_img=300),
)
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
dict(
type='RandomResize',
scale=(1280, 1280),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(640, 640)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type='CachedMixUp',
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=(640, 640),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(640, 640)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=32,
num_workers=10,
batch_sampler=None,
pin_memory=True,
dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(
batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004
interval = 10
train_cfg = dict(
max_epochs=max_epochs,
val_interval=interval,
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
val_evaluator = dict(proposal_nums=(100, 1, 10))
test_evaluator = val_evaluator
# optimizer
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
# hooks
default_hooks = dict(
checkpoint=dict(
interval=interval,
max_keep_ckpts=3 # only keep latest 3 checkpoints
))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]