KyanChen's picture
init
f549064
raw
history blame
8.06 kB
# Copyright (c) OpenMMLab. All right reserved.
import re
from collections import OrderedDict
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .base import BaseClassifier
@MODELS.register_module()
class TimmClassifier(BaseClassifier):
"""Image classifiers for pytorch-image-models (timm) model.
This class accepts all positional and keyword arguments of the function
`timm.models.create_model <https://timm.fast.ai/create_model>`_ and use
it to create a model from pytorch-image-models.
It can load checkpoints of timm directly, and the saved checkpoints also
can be directly load by timm.
Please confirm that you have installed ``timm`` if you want to use it.
Args:
*args: All positional arguments of the function
`timm.models.create_model`.
loss (dict): Config of classification loss. Defaults to
``dict(type='CrossEntropyLoss', loss_weight=1.0)``.
train_cfg (dict, optional): The training setting. The acceptable
fields are:
- augments (List[dict]): The batch augmentation methods to use.
More details can be found in :mod:`mmcls.model.utils.augment`.
Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
data_preprocessor (dict, optional): The config for preprocessing input
data. If None or no specified type, it will use
"ClsDataPreprocessor" as type. See :class:`ClsDataPreprocessor` for
more details. Defaults to None.
init_cfg (dict, optional): the config to control the initialization.
Defaults to None.
**kwargs: Other keyword arguments of the function
`timm.models.create_model`.
Examples:
>>> import torch
>>> from mmcls.models import build_classifier
>>> cfg = dict(type='TimmClassifier', model_name='resnet50', pretrained=True)
>>> model = build_classifier(cfg)
>>> inputs = torch.rand(1, 3, 224, 224)
>>> out = model(inputs)
>>> print(out.shape)
torch.Size([1, 1000])
""" # noqa: E501
def __init__(self,
*args,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
train_cfg: Optional[dict] = None,
with_cp: bool = False,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None,
**kwargs):
if data_preprocessor is None:
data_preprocessor = {}
# The build process is in MMEngine, so we need to add scope here.
data_preprocessor.setdefault('type', 'mmcls.ClsDataPreprocessor')
if train_cfg is not None and 'augments' in train_cfg:
# Set batch augmentations by `train_cfg`
data_preprocessor['batch_augments'] = train_cfg
super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
from timm.models import create_model
self.model = create_model(*args, **kwargs)
if not isinstance(loss, nn.Module):
loss = MODELS.build(loss)
self.loss_module = loss
self.with_cp = with_cp
if self.with_cp:
self.model.set_grad_checkpointing()
self._register_state_dict_hook(self._remove_state_dict_prefix)
self._register_load_state_dict_pre_hook(self._add_state_dict_prefix)
def forward(self, inputs, data_samples=None, mode='tensor'):
if mode == 'tensor':
return self.model(inputs)
elif mode == 'loss':
return self.loss(inputs, data_samples)
elif mode == 'predict':
return self.predict(inputs, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_feat(self, inputs: torch.Tensor):
if hasattr(self.model, 'forward_features'):
return self.model.forward_features(inputs)
else:
raise NotImplementedError(
f"The model {type(self.model)} doesn't support extract "
"feature because it don't have `forward_features` method.")
def loss(self, inputs: torch.Tensor, data_samples: List[ClsDataSample],
**kwargs):
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[ClsDataSample]): The annotation data of
every samples.
**kwargs: Other keyword arguments of the loss module.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
# The part can be traced by torch.fx
cls_score = self.model(inputs)
# The part can not be traced by torch.fx
losses = self._get_loss(cls_score, data_samples, **kwargs)
return losses
def _get_loss(self, cls_score: torch.Tensor,
data_samples: List[ClsDataSample], **kwargs):
"""Unpack data samples and compute loss."""
# Unpack data samples and pack targets
if 'score' in data_samples[0].gt_label:
# Batch augmentation may convert labels to one-hot format scores.
target = torch.stack([i.gt_label.score for i in data_samples])
else:
target = torch.cat([i.gt_label.label for i in data_samples])
# compute loss
losses = dict()
loss = self.loss_module(cls_score, target, **kwargs)
losses['loss'] = loss
return losses
def predict(self,
inputs: torch.Tensor,
data_samples: Optional[List[ClsDataSample]] = None):
"""Predict results from a batch of inputs.
Args:
inputs (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[ClsDataSample], optional): The annotation
data of every samples. Defaults to None.
Returns:
List[ClsDataSample]: The prediction results.
"""
# The part can be traced by torch.fx
cls_score = self(inputs)
# The part can not be traced by torch.fx
predictions = self._get_predictions(cls_score, data_samples)
return predictions
def _get_predictions(self, cls_score, data_samples=None):
"""Post-process the output of head.
Including softmax and set ``pred_label`` of data samples.
"""
pred_scores = F.softmax(cls_score, dim=1)
pred_labels = pred_scores.argmax(dim=1, keepdim=True).detach()
if data_samples is not None:
for data_sample, score, label in zip(data_samples, pred_scores,
pred_labels):
data_sample.set_pred_score(score).set_pred_label(label)
else:
data_samples = []
for score, label in zip(pred_scores, pred_labels):
data_samples.append(ClsDataSample().set_pred_score(
score).set_pred_label(label))
return data_samples
@staticmethod
def _remove_state_dict_prefix(self, state_dict, prefix, local_metadata):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_key = re.sub(f'^{prefix}model.', prefix, k)
new_state_dict[new_key] = v
return new_state_dict
@staticmethod
def _add_state_dict_prefix(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
new_prefix = prefix + 'model.'
for k in list(state_dict.keys()):
new_key = re.sub(f'^{prefix}', new_prefix, k)
state_dict[new_key] = state_dict[k]
del state_dict[k]