Spaces:
Runtime error
Runtime error
_base_ = './rtmdet_l_8xb32-300e_coco.py' | |
model = dict( | |
bbox_head=dict( | |
_delete_=True, | |
type='RTMDetInsSepBNHead', | |
num_classes=80, | |
in_channels=256, | |
stacked_convs=2, | |
share_conv=True, | |
pred_kernel_size=1, | |
feat_channels=256, | |
act_cfg=dict(type='SiLU', inplace=True), | |
norm_cfg=dict(type='SyncBN', requires_grad=True), | |
anchor_generator=dict( | |
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]), | |
bbox_coder=dict(type='DistancePointBBoxCoder'), | |
loss_cls=dict( | |
type='QualityFocalLoss', | |
use_sigmoid=True, | |
beta=2.0, | |
loss_weight=1.0), | |
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), | |
loss_mask=dict( | |
type='DiceLoss', loss_weight=2.0, eps=5e-6, reduction='mean')), | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.6), | |
max_per_img=100, | |
mask_thr_binary=0.5), | |
) | |
train_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args={{_base_.file_client_args}}), | |
dict( | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True, | |
poly2mask=False), | |
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), | |
dict( | |
type='RandomResize', | |
scale=(1280, 1280), | |
ratio_range=(0.1, 2.0), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_size=(640, 640), | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | |
dict( | |
type='CachedMixUp', | |
img_scale=(640, 640), | |
ratio_range=(1.0, 1.0), | |
max_cached_images=20, | |
pad_val=(114, 114, 114)), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)), | |
dict(type='PackDetInputs') | |
] | |
train_dataloader = dict(pin_memory=True, dataset=dict(pipeline=train_pipeline)) | |
train_pipeline_stage2 = [ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args={{_base_.file_client_args}}), | |
dict( | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True, | |
poly2mask=False), | |
dict( | |
type='RandomResize', | |
scale=(640, 640), | |
ratio_range=(0.1, 2.0), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_size=(640, 640), | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | |
dict(type='PackDetInputs') | |
] | |
custom_hooks = [ | |
dict( | |
type='EMAHook', | |
ema_type='ExpMomentumEMA', | |
momentum=0.0002, | |
update_buffers=True, | |
priority=49), | |
dict( | |
type='PipelineSwitchHook', | |
switch_epoch=280, | |
switch_pipeline=train_pipeline_stage2) | |
] | |
val_evaluator = dict(metric=['bbox', 'segm']) | |
test_evaluator = val_evaluator | |