ai-photo-gallery / configs /rtmdet /rtmdet-ins_s_8xb32-300e_coco.py
KyanChen's picture
init
f549064
raw
history blame
2.54 kB
_base_ = './rtmdet-ins_l_8xb32-300e_coco.py'
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa
model = dict(
backbone=dict(
deepen_factor=0.33,
widen_factor=0.5,
init_cfg=dict(
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)),
neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1),
bbox_head=dict(in_channels=128, feat_channels=128))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
dict(
type='RandomResize',
scale=(1280, 1280),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(
type='RandomCrop',
crop_size=(640, 640),
recompute_bbox=True,
allow_negative_crop=True),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type='CachedMixUp',
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(
type='RandomResize',
scale=(640, 640),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(
type='RandomCrop',
crop_size=(640, 640),
recompute_bbox=True,
allow_negative_crop=True),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=280,
switch_pipeline=train_pipeline_stage2)
]