Spaces:
Runtime error
Runtime error
_base_ = [ | |
'mmcls::_base_/datasets/imagenet_bs256_rsb_a12.py', | |
'mmcls::_base_/schedules/imagenet_bs2048_rsb.py', | |
'mmcls::_base_/default_runtime.py' | |
] | |
model = dict( | |
type='ImageClassifier', | |
backbone=dict( | |
type='mmdet.CSPNeXt', | |
arch='P5', | |
out_indices=(4, ), | |
expand_ratio=0.5, | |
deepen_factor=0.33, | |
widen_factor=0.5, | |
channel_attention=True, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='mmdet.SiLU')), | |
neck=dict(type='GlobalAveragePooling'), | |
head=dict( | |
type='LinearClsHead', | |
num_classes=1000, | |
in_channels=512, | |
loss=dict( | |
type='LabelSmoothLoss', | |
label_smooth_val=0.1, | |
mode='original', | |
loss_weight=1.0), | |
topk=(1, 5)), | |
train_cfg=dict(augments=[ | |
dict(type='Mixup', alpha=0.2), | |
dict(type='CutMix', alpha=1.0) | |
])) | |
# dataset settings | |
train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True)) | |
# schedule settings | |
optim_wrapper = dict( | |
optimizer=dict(weight_decay=0.01), | |
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.), | |
) | |
param_scheduler = [ | |
# warm up learning rate scheduler | |
dict( | |
type='LinearLR', | |
start_factor=0.0001, | |
by_epoch=True, | |
begin=0, | |
end=5, | |
# update by iter | |
convert_to_iter_based=True), | |
# main learning rate scheduler | |
dict( | |
type='CosineAnnealingLR', | |
T_max=595, | |
eta_min=1.0e-6, | |
by_epoch=True, | |
begin=5, | |
end=600) | |
] | |
train_cfg = dict(by_epoch=True, max_epochs=600) | |