ai-photo-gallery / mmdet /evaluation /metrics /coco_panoptic_metric.py
KyanChen's picture
init
f549064
raw
history blame
24.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from typing import Dict, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger, print_log
from terminaltables import AsciiTable
from mmdet.datasets.api_wrappers import COCOPanoptic
from mmdet.registry import METRICS
from ..functional import (INSTANCE_OFFSET, pq_compute_multi_core,
pq_compute_single_core)
try:
import panopticapi
from panopticapi.evaluation import VOID, PQStat
from panopticapi.utils import id2rgb, rgb2id
except ImportError:
panopticapi = None
id2rgb = None
rgb2id = None
VOID = None
PQStat = None
@METRICS.register_module()
class CocoPanopticMetric(BaseMetric):
"""COCO panoptic segmentation evaluation metric.
Evaluate PQ, SQ RQ for panoptic segmentation tasks. Please refer to
https://cocodataset.org/#panoptic-eval for more details.
Args:
ann_file (str, optional): Path to the coco format annotation file.
If not specified, ground truth annotations from the dataset will
be converted to coco format. Defaults to None.
seg_prefix (str, optional): Path to the directory which contains the
coco panoptic segmentation mask. It should be specified when
evaluate. Defaults to None.
classwise (bool): Whether to evaluate the metric class-wise.
Defaults to False.
outfile_prefix (str, optional): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created.
It should be specified when format_only is True. Defaults to None.
format_only (bool): Format the output results without perform
evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.
nproc (int): Number of processes for panoptic quality computing.
Defaults to 32. When ``nproc`` exceeds the number of cpu cores,
the number of cpu cores is used.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmengine.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
"""
default_prefix: Optional[str] = 'coco_panoptic'
def __init__(self,
ann_file: Optional[str] = None,
seg_prefix: Optional[str] = None,
classwise: bool = False,
format_only: bool = False,
outfile_prefix: Optional[str] = None,
nproc: int = 32,
file_client_args: dict = dict(backend='disk'),
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
if panopticapi is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
super().__init__(collect_device=collect_device, prefix=prefix)
self.classwise = classwise
self.format_only = format_only
if self.format_only:
assert outfile_prefix is not None, 'outfile_prefix must be not'
'None when format_only is True, otherwise the result files will'
'be saved to a temp directory which will be cleaned up at the end.'
self.tmp_dir = None
# outfile_prefix should be a prefix of a path which points to a shared
# storage when train or test with multi nodes.
self.outfile_prefix = outfile_prefix
if outfile_prefix is None:
self.tmp_dir = tempfile.TemporaryDirectory()
self.outfile_prefix = osp.join(self.tmp_dir.name, 'results')
# the directory to save predicted panoptic segmentation mask
self.seg_out_dir = f'{self.outfile_prefix}.panoptic'
self.nproc = nproc
self.seg_prefix = seg_prefix
self.cat_ids = None
self.cat2label = None
self.file_client_args = file_client_args
self.file_client = FileClient(**file_client_args)
if ann_file:
with self.file_client.get_local_path(ann_file) as local_path:
self._coco_api = COCOPanoptic(local_path)
self.categories = self._coco_api.cats
else:
self._coco_api = None
self.categories = None
self.file_client = FileClient(**file_client_args)
def __del__(self) -> None:
"""Clean up."""
if self.tmp_dir is not None:
self.tmp_dir.cleanup()
def gt_to_coco_json(self, gt_dicts: Sequence[dict],
outfile_prefix: str) -> Tuple[str, str]:
"""Convert ground truth to coco panoptic segmentation format json file.
Args:
gt_dicts (Sequence[dict]): Ground truth of the dataset.
outfile_prefix (str): The filename prefix of the json file. If the
prefix is "somepath/xxx", the json file will be named
"somepath/xxx.gt.json".
Returns:
Tuple[str, str]: The filename of the json file and the name of the\
directory which contains panoptic segmentation masks.
"""
assert len(gt_dicts) > 0, 'gt_dicts is empty.'
gt_folder = osp.dirname(gt_dicts[0]['seg_map_path'])
converted_json_path = f'{outfile_prefix}.gt.json'
categories = []
for id, name in enumerate(self.dataset_meta['classes']):
isthing = 1 if name in self.dataset_meta['thing_classes'] else 0
categories.append({'id': id, 'name': name, 'isthing': isthing})
image_infos = []
annotations = []
for gt_dict in gt_dicts:
img_id = gt_dict['image_id']
image_info = {
'id': img_id,
'width': gt_dict['width'],
'height': gt_dict['height'],
'file_name': osp.split(gt_dict['seg_map_path'])[-1]
}
image_infos.append(image_info)
pan_png = mmcv.imread(gt_dict['seg_map_path']).squeeze()
pan_png = pan_png[:, :, ::-1]
pan_png = rgb2id(pan_png)
segments_info = []
for segment_info in gt_dict['segments_info']:
id = segment_info['id']
label = segment_info['category']
mask = pan_png == id
isthing = categories[label]['isthing']
if isthing:
iscrowd = 1 if not segment_info['is_thing'] else 0
else:
iscrowd = 0
new_segment_info = {
'id': id,
'category_id': label,
'isthing': isthing,
'iscrowd': iscrowd,
'area': mask.sum()
}
segments_info.append(new_segment_info)
segm_file = image_info['file_name'].replace('jpg', 'png')
annotation = dict(
image_id=img_id,
segments_info=segments_info,
file_name=segm_file)
annotations.append(annotation)
pan_png = id2rgb(pan_png)
info = dict(
date_created=str(datetime.datetime.now()),
description='Coco json file converted by mmdet CocoPanopticMetric.'
)
coco_json = dict(
info=info,
images=image_infos,
categories=categories,
licenses=None,
)
if len(annotations) > 0:
coco_json['annotations'] = annotations
dump(coco_json, converted_json_path)
return converted_json_path, gt_folder
def result2json(self, results: Sequence[dict],
outfile_prefix: str) -> Tuple[str, str]:
"""Dump the panoptic results to a COCO style json file and a directory.
Args:
results (Sequence[dict]): Testing results of the dataset.
outfile_prefix (str): The filename prefix of the json files and the
directory.
Returns:
Tuple[str, str]: The json file and the directory which contains \
panoptic segmentation masks. The filename of the json is
"somepath/xxx.panoptic.json" and name of the directory is
"somepath/xxx.panoptic".
"""
label2cat = dict((v, k) for (k, v) in self.cat2label.items())
pred_annotations = []
for idx in range(len(results)):
result = results[idx]
for segment_info in result['segments_info']:
sem_label = segment_info['category_id']
# convert sem_label to json label
cat_id = label2cat[sem_label]
segment_info['category_id'] = label2cat[sem_label]
is_thing = self.categories[cat_id]['isthing']
segment_info['isthing'] = is_thing
pred_annotations.append(result)
pan_json_results = dict(annotations=pred_annotations)
json_filename = f'{outfile_prefix}.panoptic.json'
dump(pan_json_results, json_filename)
return json_filename, (
self.seg_out_dir
if self.tmp_dir is None else tempfile.gettempdir())
def _parse_predictions(self,
pred: dict,
img_id: int,
segm_file: str,
label2cat=None) -> dict:
"""Parse panoptic segmentation predictions.
Args:
pred (dict): Panoptic segmentation predictions.
img_id (int): Image id.
segm_file (str): Segmentation file name.
label2cat (dict): Mapping from label to category id.
Defaults to None.
Returns:
dict: Parsed predictions.
"""
result = dict()
result['img_id'] = img_id
# shape (1, H, W) -> (H, W)
pan = pred['pred_panoptic_seg']['sem_seg'].cpu().numpy()[0]
pan_labels = np.unique(pan)
segments_info = []
for pan_label in pan_labels:
sem_label = pan_label % INSTANCE_OFFSET
# We reserve the length of dataset_meta['classes'] for VOID label
if sem_label == len(self.dataset_meta['classes']):
continue
mask = pan == pan_label
area = mask.sum()
segments_info.append({
'id':
int(pan_label),
# when ann_file provided, sem_label should be cat_id, otherwise
# sem_label should be a continuous id, not the cat_id
# defined in dataset
'category_id':
label2cat[sem_label] if label2cat else sem_label,
'area':
int(area)
})
# evaluation script uses 0 for VOID label.
pan[pan % INSTANCE_OFFSET == len(self.dataset_meta['classes'])] = VOID
pan = id2rgb(pan).astype(np.uint8)
mmcv.imwrite(pan[:, :, ::-1], osp.join(self.seg_out_dir, segm_file))
result = {
'image_id': img_id,
'segments_info': segments_info,
'file_name': segm_file
}
return result
def _compute_batch_pq_stats(self, data_samples: Sequence[dict]):
"""Process gts and predictions when ``outfile_prefix`` is not set, gts
are from dataset or a json file which is defined by ``ann_file``.
Intermediate results, ``pq_stats``, are computed here and put into
``self.results``.
"""
if self._coco_api is None:
categories = dict()
for id, name in enumerate(self.dataset_meta['classes']):
isthing = 1 if name in self.dataset_meta['thing_classes']\
else 0
categories[id] = {'id': id, 'name': name, 'isthing': isthing}
label2cat = None
else:
categories = self.categories
cat_ids = self._coco_api.get_cat_ids(
cat_names=self.dataset_meta['classes'])
label2cat = {i: cat_id for i, cat_id in enumerate(cat_ids)}
for data_sample in data_samples:
# parse pred
img_id = data_sample['img_id']
segm_file = osp.basename(data_sample['img_path']).replace(
'jpg', 'png')
result = self._parse_predictions(
pred=data_sample,
img_id=img_id,
segm_file=segm_file,
label2cat=label2cat)
# parse gt
gt = dict()
gt['image_id'] = img_id
gt['width'] = data_sample['ori_shape'][1]
gt['height'] = data_sample['ori_shape'][0]
gt['file_name'] = segm_file
if self._coco_api is None:
# get segments_info from data_sample
seg_map_path = osp.join(self.seg_prefix, segm_file)
pan_png = mmcv.imread(seg_map_path).squeeze()
pan_png = pan_png[:, :, ::-1]
pan_png = rgb2id(pan_png)
segments_info = []
for segment_info in data_sample['segments_info']:
id = segment_info['id']
label = segment_info['category']
mask = pan_png == id
isthing = categories[label]['isthing']
if isthing:
iscrowd = 1 if not segment_info['is_thing'] else 0
else:
iscrowd = 0
new_segment_info = {
'id': id,
'category_id': label,
'isthing': isthing,
'iscrowd': iscrowd,
'area': mask.sum()
}
segments_info.append(new_segment_info)
else:
# get segments_info from annotation file
segments_info = self._coco_api.imgToAnns[img_id]
gt['segments_info'] = segments_info
pq_stats = pq_compute_single_core(
proc_id=0,
annotation_set=[(gt, result)],
gt_folder=self.seg_prefix,
pred_folder=self.seg_out_dir,
categories=categories,
file_client=self.file_client)
self.results.append(pq_stats)
def _process_gt_and_predictions(self, data_samples: Sequence[dict]):
"""Process gts and predictions when ``outfile_prefix`` is set.
The predictions will be saved to directory specified by
``outfile_predfix``. The matched pair (gt, result) will be put into
``self.results``.
"""
for data_sample in data_samples:
# parse pred
img_id = data_sample['img_id']
segm_file = osp.basename(data_sample['img_path']).replace(
'jpg', 'png')
result = self._parse_predictions(
pred=data_sample, img_id=img_id, segm_file=segm_file)
# parse gt
gt = dict()
gt['image_id'] = img_id
gt['width'] = data_sample['ori_shape'][1]
gt['height'] = data_sample['ori_shape'][0]
if self._coco_api is None:
# get segments_info from dataset
gt['segments_info'] = data_sample['segments_info']
gt['seg_map_path'] = data_sample['seg_map_path']
self.results.append((gt, result))
# TODO: data_batch is no longer needed, consider adjusting the
# parameter position
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of data samples that
contain annotations and predictions.
"""
# If ``self.tmp_dir`` is none, it will save gt and predictions to
# self.results, otherwise, it will compute pq_stats here.
if self.tmp_dir is None:
self._process_gt_and_predictions(data_samples)
else:
self._compute_batch_pq_stats(data_samples)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch. There
are two cases:
- When ``outfile_prefix`` is not provided, the elements in
results are pq_stats which can be summed directly to get PQ.
- When ``outfile_prefix`` is provided, the elements in
results are tuples like (gt, pred).
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
if self.tmp_dir is None:
# do evaluation after collect all the results
# split gt and prediction list
gts, preds = zip(*results)
if self._coco_api is None:
# use converted gt json file to initialize coco api
logger.info('Converting ground truth to coco format...')
coco_json_path, gt_folder = self.gt_to_coco_json(
gt_dicts=gts, outfile_prefix=self.outfile_prefix)
self._coco_api = COCOPanoptic(coco_json_path)
else:
gt_folder = self.seg_prefix
self.cat_ids = self._coco_api.get_cat_ids(
cat_names=self.dataset_meta['classes'])
self.cat2label = {
cat_id: i
for i, cat_id in enumerate(self.cat_ids)
}
self.img_ids = self._coco_api.get_img_ids()
self.categories = self._coco_api.cats
# convert predictions to coco format and dump to json file
json_filename, pred_folder = self.result2json(
results=preds, outfile_prefix=self.outfile_prefix)
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(self.outfile_prefix)}')
return dict()
imgs = self._coco_api.imgs
gt_json = self._coco_api.img_ann_map
gt_json = [{
'image_id': k,
'segments_info': v,
'file_name': imgs[k]['segm_file']
} for k, v in gt_json.items()]
pred_json = load(json_filename)
pred_json = dict(
(el['image_id'], el) for el in pred_json['annotations'])
# match the gt_anns and pred_anns in the same image
matched_annotations_list = []
for gt_ann in gt_json:
img_id = gt_ann['image_id']
if img_id not in pred_json.keys():
raise Exception('no prediction for the image'
' with id: {}'.format(img_id))
matched_annotations_list.append((gt_ann, pred_json[img_id]))
pq_stat = pq_compute_multi_core(
matched_annotations_list,
gt_folder,
pred_folder,
self.categories,
file_client=self.file_client,
nproc=self.nproc)
else:
# aggregate the results generated in process
if self._coco_api is None:
categories = dict()
for id, name in enumerate(self.dataset_meta['classes']):
isthing = 1 if name in self.dataset_meta[
'thing_classes'] else 0
categories[id] = {
'id': id,
'name': name,
'isthing': isthing
}
self.categories = categories
pq_stat = PQStat()
for result in results:
pq_stat += result
metrics = [('All', None), ('Things', True), ('Stuff', False)]
pq_results = {}
for name, isthing in metrics:
pq_results[name], classwise_results = pq_stat.pq_average(
self.categories, isthing=isthing)
if name == 'All':
pq_results['classwise'] = classwise_results
classwise_results = None
if self.classwise:
classwise_results = {
k: v
for k, v in zip(self.dataset_meta['classes'],
pq_results['classwise'].values())
}
print_panoptic_table(pq_results, classwise_results, logger=logger)
results = parse_pq_results(pq_results)
return results
def parse_pq_results(pq_results: dict) -> dict:
"""Parse the Panoptic Quality results.
Args:
pq_results (dict): Panoptic Quality results.
Returns:
dict: Panoptic Quality results parsed.
"""
result = dict()
result['PQ'] = 100 * pq_results['All']['pq']
result['SQ'] = 100 * pq_results['All']['sq']
result['RQ'] = 100 * pq_results['All']['rq']
result['PQ_th'] = 100 * pq_results['Things']['pq']
result['SQ_th'] = 100 * pq_results['Things']['sq']
result['RQ_th'] = 100 * pq_results['Things']['rq']
result['PQ_st'] = 100 * pq_results['Stuff']['pq']
result['SQ_st'] = 100 * pq_results['Stuff']['sq']
result['RQ_st'] = 100 * pq_results['Stuff']['rq']
return result
def print_panoptic_table(
pq_results: dict,
classwise_results: Optional[dict] = None,
logger: Optional[Union['MMLogger', str]] = None) -> None:
"""Print the panoptic evaluation results table.
Args:
pq_results(dict): The Panoptic Quality results.
classwise_results(dict, optional): The classwise Panoptic Quality.
results. The keys are class names and the values are metrics.
Defaults to None.
logger (:obj:`MMLogger` | str, optional): Logger used for printing
related information during evaluation. Default: None.
"""
headers = ['', 'PQ', 'SQ', 'RQ', 'categories']
data = [headers]
for name in ['All', 'Things', 'Stuff']:
numbers = [
f'{(pq_results[name][k] * 100):0.3f}' for k in ['pq', 'sq', 'rq']
]
row = [name] + numbers + [pq_results[name]['n']]
data.append(row)
table = AsciiTable(data)
print_log('Panoptic Evaluation Results:\n' + table.table, logger=logger)
if classwise_results is not None:
class_metrics = [(name, ) + tuple(f'{(metrics[k] * 100):0.3f}'
for k in ['pq', 'sq', 'rq'])
for name, metrics in classwise_results.items()]
num_columns = min(8, len(class_metrics) * 4)
results_flatten = list(itertools.chain(*class_metrics))
headers = ['category', 'PQ', 'SQ', 'RQ'] * (num_columns // 4)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
data = [headers]
data += [result for result in results_2d]
table = AsciiTable(data)
print_log(
'Classwise Panoptic Evaluation Results:\n' + table.table,
logger=logger)